Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 1LTL
To determine
To sketch:
The H-R diagram of the given star cluster.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one)
This star has a mass of 3.3 MSun. Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.
Compare this to the lifetime of a A0 star listed in Table 22.1 (computed using a more sophisticated approach). Is the value you calculated in the previous problem longer or shorter than what is reported in the table? (L for longer, S for shorter) (You only get one try at this problem.)
Place the following events in the formation of stars in the proper chronological
sequence, with the oldest first and the youngest last.
w. the gas and dust in the nebula flatten to a disk shape due to gravity
and a steadily increasing rate of angular rotation
x. a star emerges when the mass is great enough and the temperature is
high enough to trigger thermonuclear fusion in the core
y. the rotation of the nebular cloud increases as gas and dust
concentrates by gravity within the growing protostar in the center
z. some force, perhaps from a nearby supernova, imparts a rotation to a
nebular cloud
y, then z, then w, then x
z, then y, then w, then x
w, then y, then z, then x
z, then x, then w, then y
x, then z, then y, then w
MacBook Air
on
.H.
O O O O
Physics written by hand.
Chapter 10 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 10 - Why does helium fusion require a higher...Ch. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQ
Ch. 10 - Prob. 11RQCh. 10 - How can you explain the Algol paradox?Ch. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Prob. 15RQCh. 10 - Prob. 16RQCh. 10 - Prob. 1DQCh. 10 - Prob. 2DQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 1LTLCh. 10 - Prob. 2LTLCh. 10 - Prob. 3LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Explain how an HR diagram of the stars in a cluster can be used to determine the age of the cluster.arrow_forwardH II regions can exist only if there is a nearby star hot enough to ionize hydrogen. Hydrogen is ionized only by radiation with wavelengths shorter than 91.2 nm. What is the temperature of a star that emits its maximum energy at 91.2 nm? (Use Wien’s law from Radiation and Spectra.) Based on this result, what are the spectral types of those stars likely to provide enough energy to produce H II regions?arrow_forwardPlease asaparrow_forward
- A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) 36.854 This star has a mass of 3.3 MSun. Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.arrow_forwardSuppose a protostar has a luminosity of 157,341 Lo and a surface temperature of 4,540 K (Kelvins). What is the radius of this protostar? [Enter your answer as a multiple of the Sun's radius. I.e., if you find R = 20 Ro enter 20. This problem is easier if you start with the relevant equation and create a ratio using the Sun's values. Recall that the Sun has a surface temperature of 5778 K. ]arrow_forwardConsider the image above of the Cassiopeia A (Cas A) supernova remnant. The supernova explosion that caused this remnant was observed on earth about 300 years ago. It is about 3000 pc away. Since that time, the shockwave from the supernova has expanded to form the roughly spherical cloud pictured above. From the center point to the edge of the cloud is about 3 pc. Compute the angular diameter of the Cas A supernova remnant as viewed from Earth. Express your answer in arcminutes.arrow_forward
- Do this in 10 min. I will give like on answerarrow_forwardIf an open cluster contains 350 stars and is 48 pc in diameter, what is the average distance between the stars? On average what, share of the volume of the cluster surrounds each star?arrow_forwardFinally estimate the lifetime of an M0 spectral type star if the total mass of the star is M = 0.51M⊙ , and it has a total luminosity L = 7.7× 10−2L⊙. Make the same assumptions as the previous two problems. How does your calculated Main Sequence lifetime for the M0 type star compare to the Main Sequence lifetime you calculated for the Sun?arrow_forward
- The difference in absolute magnitude between two objects is related to their fluxes by the flux-magnitude relation: FA / FB = 2.51(MB - MA) A distant galaxy contains a supernova with an absolute magnitude of -19. If this supernova were placed next to our Sun (M = +4.8) and you observed both of them from the same distance, how much more flux would the supernova emit than the Sun? Fsupernova / FSun = ?arrow_forwardTwo stars are identified on the Hertzsprung-Russell diagram below. Hertzsprung-Russell Diagram Temperature (K) 40,000 20,00010,000 7,500 5,500 4,500 3,000 10 10 10 www 10 10 B. G K M Spectral Class Based on this diagram, how do the characteristics of Star 1 and Star 2 compare? Star 1 is cooler and less bright than Star 2. O Star 1 is hotter and brighter than Star 2. O Star 1 is cooler and brighter than Star 2. O Star 1 is hotter and less bright than Star 2. O Aisoujunarrow_forward: What does the H-R diagram show? Explain the main sequence of stars.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning