
Concept explainers
The distance between the stars in an open cluster and in a globular cluster.

Answer to Problem 3P
The distance between the stars in the open cluster ranges from 1.25 pc to 5.8 pc.
The distance between the stars in the globular cluster ranges from 0.015 pc to 0.11 pc.
Explanation of Solution
Calculation:
The volume of a Sphere is
The volume of a cluster of stars,
The volume of space between each star in an open cluster is the volume of the open cluster divide by the number of stars in the cluster, N .
Substitute the volume of the cluster in volume of star.
The distance between the stars, r is the radius of the sphere of empty space around each star.
Because there is a range of star numbers, there is a range of distances between the stars. To calculate the maximum space between the stars, use the smallest number of stars in the cluster.
An open cluster has a diameter of 25 pc and a minimum number of 10 stars.
To calculate the minimum space between the stars, use the largest number of stars in the cluster. The maximum number of stars in an open cluster is 1000 stars.
The distance between the stars in the open cluster ranges from 1.25 pc to 5.8 pc.
Global clusters have a range of diameters between 10 pc and 30 pc and contain between 100,000 and 1,000,000.
A globular cluster with the maximum space between the stars would have the largest diameter and the smallest number of stars.
A globular cluster with the minimum space between the stars would have the smallest diameter and the greatest number of stars.
The distance between the stars in the globular cluster ranges from 0.015 pc to 0.11 pc.
Want to see more full solutions like this?
Chapter 10 Solutions
Horizons: Exploring the Universe (MindTap Course List)
- Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mmarrow_forwardFor an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor. (a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.arrow_forwardA mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forward
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning




