Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 4P
To determine
The linear diameter of ring nebula in Lyrae.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A planetary nebula expanded in radius 0.3 arc seconds in 30 years. Doppler measurements show the nebula is expanding at a rate of 35 km/s. How far away is the nebula in parsecs?
First, determine what distance the nebular expanded in parsecs during the time mentioned. Δd = vpc/sTs
So we first need to convert the rate into pc/s and the time into seconds:
vpc/s = vkm/s (1 pc / 3.09 x 1013km)
vpc/s = ?
Ts = (Tyr)(365 days/yr)(24 hrs/day)(3600 s/hr)
Ts = ? s
Δd= vpc/sTs
Therefore, Δd = ? pc
Calculate the angular diameter of a prestellar nebula of radius 125 AU lying 150 pc from Earth.
angular diameter =
15. ΑΣΦ
B
?
arc seconds
If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy?
Hint: Use Wien's law:
?max =
2.90 ✕ 106 nm · K
T
How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen?
-The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen.
-The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen.
-The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.
-The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.
Chapter 10 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 10 - Why does helium fusion require a higher...Ch. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQ
Ch. 10 - Prob. 11RQCh. 10 - How can you explain the Algol paradox?Ch. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Prob. 15RQCh. 10 - Prob. 16RQCh. 10 - Prob. 1DQCh. 10 - Prob. 2DQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 1LTLCh. 10 - Prob. 2LTLCh. 10 - Prob. 3LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A protostar evolves from a temperature T = 3500 K and a luminosity L = 5000 times that of the Sun to T = 5000 K and L = 3 solar units. What is its radius (a) at the start, and (b) at the end of the evolution? [Hint: Week 6 slide 13]arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardIf the Orion Nebula is 8 pc in diameter and has a density of about 6.0 108 hydrogen atoms/m3, what is its total mass? (Notes: The volume of a sphere is 43r3; 1 pc = 3.1 1016 m; the mass of a hydrogen atom is 1.7 1027 kg.)arrow_forward
- What is a planetary nebula? Will we have one around the Sun?arrow_forwardAssuming that at the end of the He burning phase of the stellar core (r < R_core) has no H or He or other metals and is composed completely of Carbon, X=Y=0, X_c = 1 ; The envelope above the core has a normal stellar composition ( r > R_core). Calculate the length of time in years that a 1M_sol and 10M_sol star will live on the horizontal branch or the time between the start and end of the He burning phase. Assume that the normal relationship between mass and luminosity holds for horizontal branch stars. Please be as detailed as possiblearrow_forwardFor a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forward
- Place the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forwardsuppose a planetary nebula is 2.8 pc in diameter, and doppler shifts in its spectrum show that the planetary nebula is 33 km/s. how old is the planetary nebula? 1 pc= 3.1 ×10^13 km and 1 yr= 3.2 × 10^7sarrow_forwardMost stars (Main sequence) generate light through the same mechanism. Because of this, there is an empirical relation between their mass, M, and their Luminosity, L. This relation could be written in the form L/Lsun = (M/Msun, This relation is shown in the log-log diagram below. Find the value of a and round it to the nearest integer. 10 104 102 10-2 10-4 0.1 1.0 2.0 0.2 0.5 5.0 10.0 20.0 Mam (solar masses) Luminosty (solar units)arrow_forward
- White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forwardThe Orion Nebula is about 20 light-years (20 × 1018 cm) across, enclosing a roughly spherical area with a volume of 4.19 × 1057 cm3. Calculate the number of 0.1 solar mass stars that might be formed in such a nebula. Assume that the nebula has a density of 1000 atoms/cm3.arrow_forwardIf the main-sequence mass lower limit is 0.08 solar mass and the brightest main-sequence stars are 1 million times more luminous than the Sun, what is the mass range along the main sequence in the figure below? (answer in solar masses)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning