College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 15P
A hollow spherical shell with mass 2.00 kg rolls without slipping down a 38.0° slope. (a) Find the acceleration of the shell and the friction force on it. Is the friction kinetic or static friction? Why? (b) How would your answers to part (a) change if the mass were doubled to 4.00 kg?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A potter's wheel-a thick stone disk of radius 0.500 m and mass 125 kg-is freely rotating at 50.0 rev/min. The potter can stop the wheel in 6.00 s by pressing a wet rag against the rim and exerting a radially
inward force of 66.0 N. Find the effective coefficient of kinetic friction between the wheel and rag.
A 0.460-kg pendulum bob passes through the lowest part of its path at a speed of 3.42 m/s.
(a) What is the magnitude of the tension in the pendulum cable at this point if the pendulum is 70.0 cm long?
12.194
(b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (Enter your answer to at least one decimal place.)
79.05
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all
intermediate results to at least four-digit accuracy to minimize roundoff error.°
(c) What is the magnitude of the tension in the pendulum cable when the pendulum reaches its highest point?
.856
Your response differs from the correct answer by more than 10%. Double check your calculations. N
A 4.00 kg mass is attached to a vertical rod by the means of two 1.25 m strings which are 2.00 m apart. The mass rotates about the vertical shaft producing a tension of 80.0 N in the top string.
(a) What is the tension on the lower string?
(b) How many revolutions per minute does the system make?
Chapter 10 Solutions
College Physics (10th Edition)
Ch. 10 - When tightening a bolt, mechanics sometimes extend...Ch. 10 - Prob. 2CQCh. 10 - Two identical uniform 30 cm bricks are placed one...Ch. 10 - (a) If the forces on an object balance, do the...Ch. 10 - (a) Can you change the location of your bodys...Ch. 10 - Serious bicyclists say that if you reduce the...Ch. 10 - Prob. 7CQCh. 10 - In terms of torques, discuss the action of a claw...Ch. 10 - Why is a tapered water glass with a narrow base...Ch. 10 - True or false? In picking an axis about which to...
Ch. 10 - Global warming. As the earths climate continues to...Ch. 10 - If two spinning objects have the same angular...Ch. 10 - You are designing a wheel that must have a fixed...Ch. 10 - Prob. 2MCPCh. 10 - A student is sitting on a frictionless rotating...Ch. 10 - If the torques on an object balance, then it...Ch. 10 - If the forces on an object balance, then it...Ch. 10 - Prob. 6MCPCh. 10 - A person pushes vertically downward with force P...Ch. 10 - String is wrapped around the outer rim of a solid...Ch. 10 - A ball of mass 0.20 kg is whirled in a horizontal...Ch. 10 - A heavy solid disk rotating freely and slowed only...Ch. 10 - A uniform metal meterstick is balanced as shown in...Ch. 10 - Prob. 1PCh. 10 - Calculate the net torque about point O for the two...Ch. 10 - Three forces are applied to a wheel of radius...Ch. 10 - A 4 N and a 10 N force act on an object. The...Ch. 10 - A square metal plate 0.180 m on each side is...Ch. 10 - A cord is wrapped around the rim of a wheel 0.250...Ch. 10 - A certain type of propeller blade can be modeled...Ch. 10 - A 750 g grinding wheel 25.0 cm in diameter is in...Ch. 10 - A grindstone in the shape of a solid disk with...Ch. 10 - A solid, uniform cylinder with mass 8.00 kg and...Ch. 10 - A 2.00 kg stone is tied to a thin, light wire...Ch. 10 - A light rope is wrapped several times around a...Ch. 10 - A thin, light string is wrapped around the rim of...Ch. 10 - 14. A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 10 - A hollow spherical shell with mass 2.00 kg rolls...Ch. 10 - A solid disk of radius 8.50 cm and mass 1.25 kg,...Ch. 10 - What is the power output in horsepower of an...Ch. 10 - A solid uniform sphere of mass 5 kg and radius 0.1...Ch. 10 - A playground merry-go-round has a radius of 4.40 m...Ch. 10 - The flywheel of a motor has a mass of 300.0 kg and...Ch. 10 - Calculate the angular momentum and kinetic energy...Ch. 10 - (a) Calculate the magnitude of the angular...Ch. 10 - A small 0.300 kg bird is flying horizontally at...Ch. 10 - A. small 4.0 kg brick is released from rest 2.5 m...Ch. 10 - The London Eye is the tallest Ferris wheel in...Ch. 10 - A certain drawbridge can be modeled as a uniform...Ch. 10 - On an old-fashioned rotating piano stool, a woman...Ch. 10 - The spinning figure skater. The outstretched hands...Ch. 10 - A small block on a frictionless horizontal surface...Ch. 10 - A uniform 2 kg solid disk of radius R 0.4 m is...Ch. 10 - A diver comes off a board with arms straight up...Ch. 10 - A large turntable rotates about a fixed vertical...Ch. 10 - A large wooden turntable in the shape of a flat...Ch. 10 - Which of the objects shown in Figure 10.55 are in...Ch. 10 - (a) In each of the objects in Figure 10.56, what...Ch. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - The horizontal beam in Figure 10.60 weighs 150 N,...Ch. 10 - The boom in Figure 10.61 weighs 2600 N and is...Ch. 10 - A uniform ladder 7.0 m long weighing 450 N rests...Ch. 10 - A 9.0 m uniform beam is hinged to a vertical wall...Ch. 10 - A uniform beam 4.0 m long and weighing 2500 N...Ch. 10 - A diving board 3.00 m long is supported at a point...Ch. 10 - Two people carry a heavy electric motor by placing...Ch. 10 - Pumping iron. A 72.0 kg weightlifter is doing arm...Ch. 10 - The deltoid muscle. The deltoid muscle is the main...Ch. 10 - The rotor (flywheel) of a toy gyroscope has a mass...Ch. 10 - For each of the following rotating objects,...Ch. 10 - Prob. 52GPCh. 10 - A good workout. You are doing exercises on a...Ch. 10 - Prior to being placed in its hole, a 5700 N,...Ch. 10 - Prob. 55GPCh. 10 - One end of a 1.2-m-long beam is hinged to a...Ch. 10 - The farmyard gate. A gate 4.00 m wide and 2.00 m...Ch. 10 - 58. Atwoods machine. Figure 10.72 illustrates an...Ch. 10 - Prob. 59GPCh. 10 - The forces on the foot. A 750 N athlete standing...Ch. 10 - A uniform solid cylinder of mass M is supported on...Ch. 10 - Prob. 62GPCh. 10 - You are trying to raise a bicycle wheel of mass m...Ch. 10 - An experimental bicycle wheel is placed on a test...Ch. 10 - Prob. 65GPCh. 10 - Disks A and B are mounted on shaft SS and may be...Ch. 10 - One end of a thin, uniform rod is connected to a...Ch. 10 - A uniform, 7.5-m-long beam weighing 9000 N is...Ch. 10 - Human moment of inertia. The moment of inertia of...Ch. 10 - While the turntable is being accelerated, the...Ch. 10 - A doubling of the torque produces a greater...Ch. 10 - If the bodys center of mass were not placed on the...Ch. 10 - Torques and tug-of-war. In a study of the...Ch. 10 - If the competitor leans slightly farther back...Ch. 10 - Torques and tug-of-war. In a study of the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The magnitude of the displacement.
Physics (5th Edition)
5. What name is given to the property by which objects resist changes in motion?
Conceptual Physical Science (6th Edition)
27. Two 2.0 cm × 2.0 cm square aluminum electrodes, spaced 0.50 mm apart, are connected to a 100 V battery.
a. ...
College Physics: A Strategic Approach (3rd Edition)
As an expert witness, youre testifying in a case involving a motorcycle accident. A motorcyclist driving in a 6...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rod 2m long rotates in a horizontal plane about a vertical axis through its center. At each of the rod is fastened a cord 1.200m long. Each cord supports a bob of weight W. Find the speed of rotation n (in rpm) to incline each cord at 320 with the verticalarrow_forwardA mass M of 3.60E-1 kg slides inside a hoop of radius R=1.60 m with negligible friction. When M is at the top, it has a speed of 5.21 m/s. Calculate the size of the force with which the M pushes on the hoop when M is at an angle of 41.0°.arrow_forwardHand written solutions are strictly prohibited.arrow_forward
- A roller (mass m, mass moment of inertia Os, radius r) is wrapped around by a rope. A block (mass m2) is connected to the center of gravity of the roller by a massless rod. The block and the roller slide downwards on the rough inclined plane (coefficient of friction H). a) What acceleration i does the roller center of gravity experience? b) What is the maximum coefficient of friction u that a sliding motion starts from rest? Given: r, a, m1 = m2= m, Os, µ, g.arrow_forwardA yo-yo-shaped device mounted on a horizontal frictionless axis is used to lift a 39 kg box as shown in the figure. The outer radius R of the device is O.37 m, and the radius r of the hub is 0.17 m. When a constant horizontal force F app of magnitude 270N is applied to a rope wrapped around the outside of the device, the box, which is suspended from a rope wrapped around the hub, has an upward acceleration of magnitude 0.88 m/s?. What is the rotational inertia of the device about its axis of rotation? Fapp Rigid mount Hub Yo-yo shaped device -Rope Number i Unitsarrow_forwardA 45kg Box is at rest on a 2 meter long board. That end of the board is slowly raised at an incline until the box starts sliding. This point is at 34 degrees, held constant. Given that the kinetic friction is 0.50 N. Please help me solve how long will the box take to reach the bottom of the board?arrow_forward
- A 0.500-kg pendulum bob passes through the lowest part of its path at a speed of 3.48 m/s. (a) What is the magnitude of the tension in the pendulum cable at this point if the pendulum is 76.0 cm long? (b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (Enter your answer to at least one decimal place.) (c) What is the magnitude of the tension in the pendulum cable when the pendulum reaches its highest point? Need Help? Read Itarrow_forwardA 0.420-kg pendulum bob passes through the lowest part of its path at a speed of 3.21 m/s. (a) What is the magnitude of the tension in the pendulum cable at this point if the pendulum is 74.0 cm long? N (b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (Enter your answer to at least one decimal place.) (c) What is the magnitude of the tension in the pendulum cable when the pendulum reaches its highest point? Narrow_forwardThe wheel of a car has a radius of 0.300 m. The engine ofthe car applies a torque of 240 N*m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a counter torque. Moreever, the car has a constatnt velocity, so this counter torque balances the applied tourque. What is the magnitude of the static frictional force?arrow_forward
- A 65 kg student is in a car traveling at 25 m/s on a hill of radius 110 m. When the car is at the top of the hill, what upward force does the seat exert on the student? A 4.2 m long uniform post is supported by a cable having a tension of 1 700 N. What is the mass of this post?arrow_forwardA wheel of radius 0.269 m, which we can model as a thin disk, is mounted on a frictionless horizontal axis. The mass of the wheel is 2.44 kg. A massless cord wrapped around the wheel is attached to a block of 4.16 kg that slides on a horizontal frictionless surface. If a horizontal force P with a magnitude of 10.1 N is applied to the block as shown below. If the wheel and block start at rest, and the block is moved through a displacement of 2.60 m what is the final angular velocity of the wheel in rad/s, assuming the cord does not slip. Parrow_forwardA person pushing a uniformly-loaded 30.2 kg wheelbarrow of length L with pushing force P is attempting to get it over a step. The maximum horizontal force that the person can apply is Px = 553 N. What is the maximum height h of the step, expressed as a fraction n of the wheel's radius R, that the person can get the wheelbarrow over? The gravitational acceleration is g = 9.81 m/s². 10 P L R h = nR h = Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Rotational Kinematics Physics Problems, Basic Introduction, Equations & Formulas; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=0El-DqrCTZM;License: Standard YouTube License, CC-BY