A care of mass M 51.5 kg is getting ready to carry a crate of mass m 13.3 kg up a slope of angle 25 with respect to the horizontal, as shown in the figure. The wheels of the cart move freely without friction in their axles and they do not skid over the incline. The coefficients of static and kinetic friction between the crate and the cart are 0.7 and 0.45, respectively. The system is subject to the regular force of gravity (g- 9.80665 m/s²). The cart is initially at rest while a rope under tension T that is parallel to the slope balances its "down ramp tendency of motion" caused by gravity. At t=0 the magnitude of the tension starts increasing linearly at a rate of 11.5 N/s and the cart accelerates up the slope. (a) Determine the work done by the tension between t= 0 and the moment the crate starts sliding toward the back of the cart. W J (b) Determine the change in the kinetic energy of the crate between 0 and the moment it starts sliding toward the back of the cart. AK- (e) Determine the magnitude of the acceleration of the crate, with respect to the fixed incline, when it is sliding toward the back of the cart. GN

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Hand written solutions are strictly prohibited. 

Uphill Without Slipping
A cart of mass M = 51.5 kg is getting ready to carry a crate of mass m 13.3kg up a slope of angle #25 with respect to the horizontal, as shown in the figure. The wheels of the
cart move freely without friction in their axles and they do not skid over the incline. The coefficients of static and kinetic friction between the crate and the cart are 0.7 and 0.45,
respectively. The system is subject to the regular force of gravity (g 9.80665 m/s²).
The cart is initially at rest while a rope under tension T that is parallel to the slope balances its "down ramp tendency of motion" caused by gravity. At t=0 the magnitude of the
tension starts increasing linearly at a rate of 11.5 N/s and the cart accelerates up the slope.
(a) Determine the work done by the tension between t= 0 and the moment the crate starts sliding toward the back of the cart.
W
(b) Determine the change in the kinetic energy of the crate between t=0 and the moment it starts sliding toward the back of the cart.
AK-
4 J
(c) Determine the magnitude of the acceleration of the crate, with respect to the fixed incline, when it is sliding toward the back of the cart.
m/s²
a=
Transcribed Image Text:Uphill Without Slipping A cart of mass M = 51.5 kg is getting ready to carry a crate of mass m 13.3kg up a slope of angle #25 with respect to the horizontal, as shown in the figure. The wheels of the cart move freely without friction in their axles and they do not skid over the incline. The coefficients of static and kinetic friction between the crate and the cart are 0.7 and 0.45, respectively. The system is subject to the regular force of gravity (g 9.80665 m/s²). The cart is initially at rest while a rope under tension T that is parallel to the slope balances its "down ramp tendency of motion" caused by gravity. At t=0 the magnitude of the tension starts increasing linearly at a rate of 11.5 N/s and the cart accelerates up the slope. (a) Determine the work done by the tension between t= 0 and the moment the crate starts sliding toward the back of the cart. W (b) Determine the change in the kinetic energy of the crate between t=0 and the moment it starts sliding toward the back of the cart. AK- 4 J (c) Determine the magnitude of the acceleration of the crate, with respect to the fixed incline, when it is sliding toward the back of the cart. m/s² a=
Expert Solution
steps

Step by step

Solved in 10 steps with 10 images

Blurred answer
Knowledge Booster
Center of gravity of a system
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON