A 2.00 kg stone is tied to a thin, light wire wrapped around the outer edge of the uniform 10.0 kg cylindrical pulley shown in Figure 10.46 . The inner diameter of the pulley is 60.0 cm, while the outer diameter is 1.00 m. The system is released from rest, and there is no friction at the axle of the pulley. Find (a) the acceleration of the stone, (b) the tension in the wire, and (c) the angular acceleration of the pulley. Figure 10.46 Problem 11.
A 2.00 kg stone is tied to a thin, light wire wrapped around the outer edge of the uniform 10.0 kg cylindrical pulley shown in Figure 10.46 . The inner diameter of the pulley is 60.0 cm, while the outer diameter is 1.00 m. The system is released from rest, and there is no friction at the axle of the pulley. Find (a) the acceleration of the stone, (b) the tension in the wire, and (c) the angular acceleration of the pulley. Figure 10.46 Problem 11.
A 2.00 kg stone is tied to a thin, light wire wrapped around the outer edge of the uniform 10.0 kg cylindrical pulley shown in Figure 10.46. The inner diameter of the pulley is 60.0 cm, while the outer diameter is 1.00 m. The system is released from rest, and there is no friction at the axle of the pulley. Find (a) the acceleration of the stone, (b) the tension in the wire, and (c) the angular acceleration of the pulley.
Figure 10.46
Problem 11.
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
simple diagram to illustrate the setup for each law- coulombs law and biot savart law
A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.
An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.