Chemistry
Chemistry
13th Edition
ISBN: 9781259911156
Author: Raymond Chang Dr., Jason Overby Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.9QP

Predict the geometry of the following molecules and ion using the VSEPR model: (a) CBr4, (b) BCl3, (c) NF3, (d) H2Se, (e) NO 2 .

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: For the given set of molecules the molecular geometry around the central metal should be predicted using VSEPR model.

Concept Introduction:

Molecular geometry: It is defined as unique three dimensional arrangements of atoms around the central metal present in the molecule which is determined by using spectroscopic techniques and also by using Lewis structure or the valence shell electron pair repulsion theory (VSEPR).

VSEPR Theory:

As the name itself indicates that the basis for this theory is the electron pair that is bonded electron present in either single or double bonds or lone pair electrons, present in the valence shell tends to repel each other which then the tends to be in position in order to minimize the repulsions. The steps involved in the theory in describing the geometry is as follows,

  • The first step is to draw the correct Lewis structure for the molecule.
  • Then, the electron domain around the central atom should be counted and the geometry that matches with that type of domain in VSEPR should be determined.
  • Finally, the geometry is predicted by using the orientation of atoms.

The molecules with considering the domains of type AB2 will tend to have shape like linear or bent if the central atom have lone pair of electrons with it, type AB3 will have shape like trigonal planar, type AB4 will have shape like tetrahedral or square planar, type AB5 will have trigonal bipyramidal and AB6 will have shape like octahedral respectively.

Lewis structure for any molecule is drawn by using the following steps,

First the skeletal structure for the given molecule is drawn then the total number of valence electrons for all atoms present in the molecule is determined

The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.

Finally, the electrons which got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Electron Domain: In VSEPR theory, both the lone pair and the bonded pair are together considered as electron domain regardless of the type of bond in which the bonded pair presents.

Answer to Problem 10.9QP

Tetrahedral geometry

Explanation of Solution

To predict: The geometry for the given molecule.

Draw the Lewis structure for the molecule (a)

Chemistry, Chapter 10, Problem 10.9QP , additional homework tip  1

First the skeletal structure for the given molecule is drawn then the total number of valence electrons in the molecule is 32.

The next step is to subtract the electrons present in the total number of bonds present in the molecule with the total valence electrons such that 8 has to be subtracted with 32 as each bond contains two electrons with it and there are four bonds in the skeletal structure.

Finally, the 24 electrons got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Determine the molecular geometry for the molecule (a) using VSEPR.

The electron domain for the given molecule is obtained by viewing the Lewis structure which is of type tetrahedral that is four atoms gets bonded with the central atom in the given molecule.

There exist no lone pair on carbon central atom then the molecular geometry for this molecule is tetrahedral.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: For the given set of molecules the molecular geometry around the central metal should be predicted using VSEPR model.

Concept Introduction:

Molecular geometry: It is defined as unique three dimensional arrangements of atoms around the central metal present in the molecule which is determined by using spectroscopic techniques and also by using Lewis structure or the valence shell electron pair repulsion theory (VSEPR).

VSEPR Theory:

As the name itself indicates that the basis for this theory is the electron pair that is bonded electron present in either single or double bonds or lone pair electrons, present in the valence shell tends to repel each other which then the tends to be in position in order to minimize the repulsions. The steps involved in the theory in describing the geometry is as follows,

  • The first step is to draw the correct Lewis structure for the molecule.
  • Then, the electron domain around the central atom should be counted and the geometry that matches with that type of domain in VSEPR should be determined.
  • Finally, the geometry is predicted by using the orientation of atoms.

The molecules with considering the domains of type AB2 will tend to have shape like linear or bent if the central atom have lone pair of electrons with it, type AB3 will have shape like trigonal planar, type AB4 will have shape like tetrahedral or square planar, type AB5 will have trigonal bipyramidal and AB6 will have shape like octahedral respectively.

Lewis structure for any molecule is drawn by using the following steps,

First the skeletal structure for the given molecule is drawn then the total number of valence electrons for all atoms present in the molecule is determined

The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.

Finally, the electrons which got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Electron Domain: In VSEPR theory, both the lone pair and the bonded pair are together considered as electron domain regardless of the type of bond in which the bonded pair presents.

Answer to Problem 10.9QP

 (b)

Trigonal planar

Explanation of Solution

To predict: The geometry for the given molecule.

Draw the Lewis structure for the molecule (b)

Chemistry, Chapter 10, Problem 10.9QP , additional homework tip  2

First the skeletal structure for the given molecule is drawn then the total number of valence electrons in the molecule is 24.

The next step is to subtract the electrons present in the total number of bonds present in the molecule with the total valence electrons such that 6 has to be subtracted with 24 as each bond contains two electrons with it and there are three bonds in the skeletal structure.

Finally, the 18 electrons got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Determine the molecular geometry for the molecule (b) using VSEPR.

The electron domain for the given molecule is obtained by viewing the Lewis structure which is of type trigonal planar that is the boron atom contains three chlorine atoms and no lone pair of electrons over boron atoms hence the molecular geometry for the molecule is also trigonal planar.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: For the given set of molecules the molecular geometry around the central metal should be predicted using VSEPR model.

Concept Introduction:

Molecular geometry: It is defined as unique three dimensional arrangements of atoms around the central metal present in the molecule which is determined by using spectroscopic techniques and also by using Lewis structure or the valence shell electron pair repulsion theory (VSEPR).

VSEPR Theory:

As the name itself indicates that the basis for this theory is the electron pair that is bonded electron present in either single or double bonds or lone pair electrons, present in the valence shell tends to repel each other which then the tends to be in position in order to minimize the repulsions. The steps involved in the theory in describing the geometry is as follows,

  • The first step is to draw the correct Lewis structure for the molecule.
  • Then, the electron domain around the central atom should be counted and the geometry that matches with that type of domain in VSEPR should be determined.
  • Finally, the geometry is predicted by using the orientation of atoms.

The molecules with considering the domains of type AB2 will tend to have shape like linear or bent if the central atom have lone pair of electrons with it, type AB3 will have shape like trigonal planar, type AB4 will have shape like tetrahedral or square planar, type AB5 will have trigonal bipyramidal and AB6 will have shape like octahedral respectively.

Lewis structure for any molecule is drawn by using the following steps,

First the skeletal structure for the given molecule is drawn then the total number of valence electrons for all atoms present in the molecule is determined

The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.

Finally, the electrons which got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Electron Domain: In VSEPR theory, both the lone pair and the bonded pair are together considered as electron domain regardless of the type of bond in which the bonded pair presents.

Answer to Problem 10.9QP

Trigonal pyramidal

To predict: The geometry for the given molecule.

Draw the Lewis structure for the molecule (c)

Chemistry, Chapter 10, Problem 10.9QP , additional homework tip  3

Explanation of Solution

First the skeletal structure for the given molecule is drawn then the total number of valence electrons in the molecule is 26.

The next step is to subtract the electrons present in the total number of bonds present in the molecule with the total valence electrons such that 6 has to be subtracted with 26 as each bond contains two electrons with it and there are three bonds in the skeletal structure.

Finally, the 20 electrons got after subtractions has to be equally distributed over all the atoms present in the molecule such that each atom contains eight electrons in its valence shell.

Determine the molecular geometry for the molecule (c) using VSEPR.

The electron domain for the given molecule is obtained by viewing the Lewis structure which is of type tetrahedral since central atom nitrogen contains three fluorine atoms and one lone pair of electron.

The molecular geometry for the molecule is trigonal pyramidal because of one lone pair of electron it contain.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: For the given set of molecules the molecular geometry around the central metal should be predicted using VSEPR model.

Concept Introduction:

Molecular geometry: It is defined as unique three dimensional arrangements of atoms around the central metal present in the molecule which is determined by using spectroscopic techniques and also by using Lewis structure or the valence shell electron pair repulsion theory (VSEPR).

VSEPR Theory:

As the name itself indicates that the basis for this theory is the electron pair that is bonded electron present in either single or double bonds or lone pair electrons, present in the valence shell tends to repel each other which then the tends to be in position in order to minimize the repulsions. The steps involved in the theory in describing the geometry is as follows,

  • The first step is to draw the correct Lewis structure for the molecule.
  • Then, the electron domain around the central atom should be counted and the geometry that matches with that type of domain in VSEPR should be determined.
  • Finally, the geometry is predicted by using the orientation of atoms.

The molecules with considering the domains of type AB2 will tend to have shape like linear or bent if the central atom have lone pair of electrons with it, type AB3 will have shape like trigonal planar, type AB4 will have shape like tetrahedral or square planar, type AB5 will have trigonal bipyramidal and AB6 will have shape like octahedral respectively.

Lewis structure for any molecule is drawn by using the following steps,

First the skeletal structure for the given molecule is drawn then the total number of valence electrons for all atoms present in the molecule is determined

The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.

Finally, the electrons which got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Electron Domain: In VSEPR theory, both the lone pair and the bonded pair are together considered as electron domain regardless of the type of bond in which the bonded pair presents.

Answer to Problem 10.9QP

(d)

Bent shaped

Explanation of Solution

To predict: The geometry for the given molecule.

Draw the Lewis structure for the molecule (d)

Chemistry, Chapter 10, Problem 10.9QP , additional homework tip  4

First the skeletal structure for the given molecule is drawn then the total number of valence electrons in the molecule is 8.

The next step is to subtract the electrons present in the total number of bonds present in the molecule with the total valence electrons such that 4 has to be subtracted with 8 as each bond contains two electrons with it and there are two bonds in the skeletal structure.

Finally, the 4 electrons got after subtractions has to be equally distributed over selenium atom such that each atom contains eight electrons in its valence shell.

Determine the molecular geometry for the molecule (d) using VSEPR.

The electron domain for the given molecule is obtained by viewing the Lewis structure which is of type tetrahedral due to presence of two lone pair of electrons with it but the molecular geometry is bent since due to the presence of two lone pair of electrons over the central Se atom.

(e)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation: For the given set of molecules the molecular geometry around the central metal should be predicted using VSEPR model.

Concept Introduction:

Molecular geometry: It is defined as unique three dimensional arrangements of atoms around the central metal present in the molecule which is determined by using spectroscopic techniques and also by using Lewis structure or the valence shell electron pair repulsion theory (VSEPR).

VSEPR Theory:

As the name itself indicates that the basis for this theory is the electron pair that is bonded electron present in either single or double bonds or lone pair electrons, present in the valence shell tends to repel each other which then the tends to be in position in order to minimize the repulsions. The steps involved in the theory in describing the geometry is as follows,

  • The first step is to draw the correct Lewis structure for the molecule.
  • Then, the electron domain around the central atom should be counted and the geometry that matches with that type of domain in VSEPR should be determined.
  • Finally, the geometry is predicted by using the orientation of atoms.

The molecules with considering the domains of type AB2 will tend to have shape like linear or bent if the central atom have lone pair of electrons with it, type AB3 will have shape like trigonal planar, type AB4 will have shape like tetrahedral or square planar, type AB5 will have trigonal bipyramidal and AB6 will have shape like octahedral respectively.

Lewis structure for any molecule is drawn by using the following steps,

First the skeletal structure for the given molecule is drawn then the total number of valence electrons for all atoms present in the molecule is determined

The next step is to subtract the electrons present in the total number of bonds present in the skeletal structure of the molecule with the total valence electrons such that considering each bond contains two electrons with it.

Finally, the electrons which got after subtractions has to be equally distributed such that each atom contains eight electrons in its valence shell.

Electron Domain: In VSEPR theory, both the lone pair and the bonded pair are together considered as electron domain regardless of the type of bond in which the bonded pair presents.

Answer to Problem 10.9QP

Bent shaped

Explanation of Solution

To predict: The geometry for the given molecule.

Draw the Lewis structure for the molecule (e)

Chemistry, Chapter 10, Problem 10.9QP , additional homework tip  5

First the skeletal structure for the given molecule is drawn then the total number of valence electrons in the molecule is 17 which is added with one electron due to the presence of charge -1 in the given molecule.

The next step is to subtract the electrons present in the total number of bonds present in the molecule with the total valence electrons such that 6 has to be subtracted with 18 as each bond contains two electrons with it and there are three bonds in the skeletal structure.

Finally, the 12 electrons got after subtractions has to be equally distributed over the atoms such that each atom contains eight electrons in its valence shell.

Determine the molecular geometry for the molecule (e) using VSEPR.

The electron domain for the given molecule is obtained by viewing the Lewis structure which is of type trigonal planar since there are two atoms and one lone pair electron around the central atom but the molecular geometry according to VSEPR theory is bent.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
At 0oC and 1 atm, the viscosity of hydrogen (gas) is 8.55x10-5 P. Calculate the viscosity of a gas, if possible, consisting of deuterium. Assume that the molecular sizes are equal.
Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the molecules
Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the molecules

Chapter 10 Solutions

Chemistry

Ch. 10.4 - Describe the hybridization state of Se in SeF6.Ch. 10.4 - How many orbitals does a set of sp3d hybrid...Ch. 10.4 - What is the hybridization of P in PH4+?Ch. 10.4 - What is the hybridization of Xe in XeF4Ch. 10.5 - Describe the bonding in the hydrogen cyanide...Ch. 10.5 - How many pi bonds are present in CS2?Ch. 10.5 - Which of the following pairs of atomic orbitals on...Ch. 10.6 - One way to account for the fact that an O2...Ch. 10.7 - Which of the following species has a longer bond...Ch. 10.7 - Calculate the bond order of F2+.Ch. 10.7 - Determine if N2+ is diamagnetic or paramagnetic.Ch. 10.7 - Estimate the bond enthalpy (kJ/mol) of the H2+...Ch. 10.8 - Describe the bonding in the nitrate ion (NO3) in...Ch. 10 - How is the geometry of a molecule defined and why...Ch. 10 - Sketch the shape of a linear triatomic molecule, a...Ch. 10 - How many atoms are directly bonded to the central...Ch. 10 - Discuss the basic features of the VSEPR model....Ch. 10 - Prob. 10.5QPCh. 10 - Prob. 10.6QPCh. 10 - Predict the geometries of the following species...Ch. 10 - Predict the geometries of the following species:...Ch. 10 - Predict the geometry of the following molecules...Ch. 10 - Predict the geometry of the following molecules...Ch. 10 - Predict the geometry of the following molecules...Ch. 10 - Predict the geometries of the following ions: (a)...Ch. 10 - Describe the geometry around each of the three...Ch. 10 - Which of the following species are tetrahedral?...Ch. 10 - Prob. 10.15QPCh. 10 - Prob. 10.16QPCh. 10 - Prob. 10.17QPCh. 10 - The bonds in beryllium hydride (BeH2) molecules...Ch. 10 - Referring to Table 10.3, arrange the following...Ch. 10 - The dipole moments of the hydrogen halides...Ch. 10 - List the following molecules in order of...Ch. 10 - Does the molecule OCS have a higher or lower...Ch. 10 - Which of the molecules (a) or (b) has a higher...Ch. 10 - Prob. 10.24QPCh. 10 - What is valence bond theory? How does it differ...Ch. 10 - Use valence bond theory to explain the bonding in...Ch. 10 - Prob. 10.27QPCh. 10 - Prob. 10.28QPCh. 10 - Prob. 10.29QPCh. 10 - What is the angle between the following two hybrid...Ch. 10 - Describe the bonding scheme of the AsH3 molecule...Ch. 10 - What is the hybridization state of Si in SiH4 and...Ch. 10 - Describe the change in hybridization (if any) of...Ch. 10 - Consider the reaction BF3+NH3F3BNH3 Describe the...Ch. 10 - What hybrid orbitals are used by nitrogen atoms in...Ch. 10 - Prob. 10.36QPCh. 10 - Give the formula of a cation comprised of iodine...Ch. 10 - Give the formula of an anion comprised of iodine...Ch. 10 - How would you distinguish between a sigma bond and...Ch. 10 - What are the hybrid orbitals of the carbon atoms...Ch. 10 - Specify which hybrid orbitals are used by carbon...Ch. 10 - Prob. 10.42QPCh. 10 - The allene molecule H2CCCH2 is linear (the three C...Ch. 10 - How many pi bonds and sigma bonds are there in the...Ch. 10 - How many sigma bonds and pi bonds are there in...Ch. 10 - What is molecular orbital theory? How does it...Ch. 10 - Sketch the shapes of the following molecular...Ch. 10 - Explain the significance of bond order. Can bond...Ch. 10 - Explain in molecular orbital terms the changes in...Ch. 10 - The formation of H2 from two H atoms is an...Ch. 10 - Prob. 10.51QPCh. 10 - Arrange the following species in order of...Ch. 10 - Prob. 10.53QPCh. 10 - Which of these species has a longer bond, B2 or...Ch. 10 - Acetylene (C2H2) has a tendency to lose two...Ch. 10 - Compare the Lewis and molecular orbital treatments...Ch. 10 - Explain why the bond order of N2 is greater than...Ch. 10 - Compare the relative stability of the following...Ch. 10 - Use molecular orbital theory to compare the...Ch. 10 - A single bond is almost always a sigma bond, and a...Ch. 10 - In 2009 the ion N23 was isolated. Use a molecular...Ch. 10 - The following potential energy curve represents...Ch. 10 - Prob. 10.63QPCh. 10 - Prob. 10.64QPCh. 10 - Prob. 10.65QPCh. 10 - Explain why the symbol on the left is a better...Ch. 10 - Determine which of these molecules has a more...Ch. 10 - Nitryl fluoride (FNO2) is very reactive...Ch. 10 - Describe the bonding in the nitrate ion NO3 in...Ch. 10 - Prob. 10.70QPCh. 10 - Which of the following species is not likely to...Ch. 10 - Draw the Lewis structure of mercury(II) bromide....Ch. 10 - Sketch the bond moments and resultant dipole...Ch. 10 - Although both carbon and silicon are in Group 4A,...Ch. 10 - Acetaminophen is the active ingredient in Tylenol....Ch. 10 - Caffeine is a stimulant drug present in coffee....Ch. 10 - Predict the geometry of sulfur dichloride (SCl2)...Ch. 10 - Antimony pentafluoride, SbF5, reacts with XeF4 and...Ch. 10 - Draw Lewis structures and give the other...Ch. 10 - Predict the bond angles for the following...Ch. 10 - Briefly compare the VSEPR and hybridization...Ch. 10 - Describe the hybridization state of arsenic in...Ch. 10 - Draw Lewis structures and give the other...Ch. 10 - Which of the following molecules and ions are...Ch. 10 - Prob. 10.85QPCh. 10 - The N2F2 molecule can exist in either of the...Ch. 10 - Cyclopropane (C3H6) has the shape of a triangle in...Ch. 10 - The compound 1,2-dichloroethane (C2H4Cl2) is...Ch. 10 - Does the following molecule have a dipole moment?...Ch. 10 - So-called greenhouse gases, which contribute to...Ch. 10 - The bond angle of SO2 is very close to 120, even...Ch. 10 - 3-azido-3-deoxythymidine, shown here, commonly...Ch. 10 - The following molecules (AX4Y2) all have...Ch. 10 - The compounds carbon tetrachloride (CCl4) and...Ch. 10 - Prob. 10.95QPCh. 10 - What are the hybridization states of the C and N...Ch. 10 - Use molecular orbital theory to explain the...Ch. 10 - Referring to the Chemistry in Action essay...Ch. 10 - Which of the molecules (a)(c) are polar?Ch. 10 - Prob. 10.100QPCh. 10 - The stable allotropic form of phosphorus is P4, in...Ch. 10 - Referring to Table 9.4, explain why the bond...Ch. 10 - Use molecular orbital theory to explain the...Ch. 10 - The ionic character of the bond in a diatomic...Ch. 10 - Prob. 10.105QPCh. 10 - Prob. 10.106QPCh. 10 - Aluminum trichloride (AlCl3) is an...Ch. 10 - The molecules cis-dichloroethylene and...Ch. 10 - Prob. 10.109QPCh. 10 - Prob. 10.110QPCh. 10 - The molecule benzyne (C6H4) is a very reactive...Ch. 10 - Assume that the third-period element phosphorus...Ch. 10 - Consider a N2 molecule in its first excited...Ch. 10 - Prob. 10.114QPCh. 10 - Prob. 10.116QPCh. 10 - Draw the Lewis structure of ketene (C2H2O) and...Ch. 10 - TCDD, or 2,3,7,8-tetrachlorodibenzo-p-dioxin, is a...Ch. 10 - Write the electron configuration of the cyanide...Ch. 10 - Prob. 10.120QPCh. 10 - The geometries discussed in this chapter all lend...Ch. 10 - Prob. 10.122QPCh. 10 - Which of the following ions possess a dipole...Ch. 10 - Given that the order of molecular orbitals for NO...Ch. 10 - Shown here are molecular models of SX4 for X = F,...Ch. 10 - Based on what you have learned from this chapter...Ch. 10 - How many carbon atoms are contained in one square...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY