Consider a N2 molecule in its first excited electronic state, that is, when an electron in the highest occupied molecular orbital is promoted to the lowest empty molecular orbital. (a) Identify the molecular orbitals involved and sketch a diagram to show the transition. (b) Compare the bond order and bond length of N2* with N2, where the asterisk denotes the excited molecule. (c) Is N2* diamagnetic or paramagnetic? (d) When N2* loses its excess energy and converts to the ground state N2, it emits a photon of wavelength 470 nm, which makes up part of the auroras lights. Calculate the energy difference between these levels.
(a)
Interpretation:
The molecular orbital involved in transition should be identified and to sketch the transition. Bond order of and should be found and the bond length should be compared. The magnetic properties of should be found out. The energy difference of the given transition should be determined
Concept Introduction:
- In molecular orbital theory, when the bonding takes place the atomic orbitals that take part combine to get a new orbital that has the properties of the whole molecule. The newly formed orbitals are known as molecular orbitals
- The bond order gives an idea about the stability of a molecule. It can be calculated using the molecular orbital theory. The stability of a molecule increase as the bond order increases.
- Paramagnetic species contains at least one unpaired electrons and can be attracted towards magnetic fields. Diamagnetic species does have any unpaired electrons. That is spins of all the electrons are paired. It slightly repelled towards the magnetic fields
To identify: molecular orbital involved in transition and to sketch the transition.
Answer to Problem 10.113QP
The transition sketch is,
Explanation of Solution
In molecular orbital theory, when the bonding takes place the atomic orbitals that take part combine to get a new orbital that has the properties of the whole molecule. The newly formed orbitals are known as molecular orbitals and only contain a maximum of two electrons. The number of newly formed molecular orbital is equal to the number of atomic orbitals involved in the bonding.
There are two types of molecular orbitals,
- a) Bonding molecular orbitals: sharing of electron density is between the nuclei and has comparatively lower energy and fills first.
- b) Antibonding molecular orbitals: Two nuclei is pulled by the electrons density in opposite direction and has higher energy comparing to bonding molecular orbital.
Molecular orbital diagram of is given below
Figure 1
In the ground state of the electrons are in orbital when the gets excited by getting energy the electron move to orbitals.
The diagram that showing transition is given below,
(b)
Interpretation:
The molecular orbital involved in transition should be identified and to sketch the transition. Bond order of and should be found and the bond length should be compared. The magnetic properties of should be found out. The energy difference of the given transition should be determined
Concept Introduction:
- In molecular orbital theory, when the bonding takes place the atomic orbitals that take part combine to get a new orbital that has the properties of the whole molecule. The newly formed orbitals are known as molecular orbitals
- The bond order gives an idea about the stability of a molecule. It can be calculated using the molecular orbital theory. The stability of a molecule increase as the bond order increases.
- Paramagnetic species contains at least one unpaired electrons and can be attracted towards magnetic fields. Diamagnetic species does have any unpaired electrons. That is spins of all the electrons are paired. It slightly repelled towards the magnetic fields
To identify: Bond of order of and. Also to compare its bond length
Answer to Problem 10.113QP
Bond order of and is 3 and 2 respectively. Also the bond length of is longer than .
Explanation of Solution
Electronic configuration of excited nitrogen molecule is
The bond order gives an idea about the stability of a molecule. It can be calculated using the molecular orbital theory. The stability of a molecule increase as the bond order increases.
Electronic configuration of excited nitrogen molecule is
The bond order gives an idea about the stability of a molecule. It can be calculated using the molecular orbital theory. The stability of a molecule increase as the bond order increases.
Bond order of is 3 whereas is 2.
Therefore, the bond length of is longer than .
(c)
Interpretation:
The molecular orbital involved in transition should be identified and to sketch the transition. Bond order of and should be found and the bond length should be compared. The magnetic properties of should be found out. The energy difference of the given transition should be determined
Concept Introduction:
- In molecular orbital theory, when the bonding takes place the atomic orbitals that take part combine to get a new orbital that has the properties of the whole molecule. The newly formed orbitals are known as molecular orbitals
- The bond order gives an idea about the stability of a molecule. It can be calculated using the molecular orbital theory. The stability of a molecule increase as the bond order increases.
- Paramagnetic species contains at least one unpaired electrons and can be attracted towards magnetic fields. Diamagnetic species does have any unpaired electrons. That is spins of all the electrons are paired. It slightly repelled towards the magnetic fields
To identify: The magnetic properties of
Answer to Problem 10.113QP
is diamagnetic
Explanation of Solution
Paramagnetic species contains at least one unpaired electrons and can be attracted towards magnetic fields. Diamagnetic species does have any unpaired electrons. That is spins of all the electrons are paired. It slightly repelled towards the magnetic fields.
Electronic configuration of excited nitrogen molecule is
Even though there are unpaired electrons, the spin of the electrons was not change in the time of transition. All the electrons are paired so it is diamagnetic.
(d)
Interpretation:
The molecular orbital involved in transition should be identified and to sketch the transition. Bond order of and should be found and the bond length should be compared. The magnetic properties of should be found out. The energy difference of the given transition should be determined
Concept Introduction:
- In molecular orbital theory, when the bonding takes place the atomic orbitals that take part combine to get a new orbital that has the properties of the whole molecule. The newly formed orbitals are known as molecular orbitals
- The bond order gives an idea about the stability of a molecule. It can be calculated using the molecular orbital theory. The stability of a molecule increase as the bond order increases.
- Paramagnetic species contains at least one unpaired electrons and can be attracted towards magnetic fields. Diamagnetic species does have any unpaired electrons. That is spins of all the electrons are paired. It slightly repelled towards the magnetic fields
To determine: The energy difference of the given transition.
Answer to Problem 10.113QP
The energy difference of the given transition is
Explanation of Solution
The energy of light is calculated below.
Given,
The wavelength of light is .
Planck’s constant is
Speed of the light is
The energy of light is calculated is calculated by the equation,
Substituting the given values in the equation,
The energy difference of the given transition is
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry
- . Assume that the third-period element phosphorus forms a diatomic molecule, P2, in an analogous way as nitrogen does to form N2. (a) Write the electronic configuration for P2. Use [Ne2] to represent the electron configuration for the first two periods. (b) Calculate its bond order. (c) What are its magnetic properties (diamagnetic or paramagnetic)?arrow_forwardButadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths: (a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle C—C bond length in butadiene (1.48 Å) is a little shorter than the average C—C single bond length (1.54 Å). Does this imply that the middle C—C bond in butadiene is weaker or stronger than the average C—C single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle C—C bond.arrow_forwardNitrogen trifluoride (NF3) is used in the electronics industry to clean surfaces. NF3 is also a potent greenhouse gas. (A) Draw the Lewis structure of NF3 and determine its molecular geometry. (B) BF3 and NF3 both have three covalently bonded fluorine atoms around a central atom. Do they have the same dipole moment? (C) Could BF3 also behave as a greenhouse gas? Explain why or why not.arrow_forward
- A useful solvent that will dissolve salts as well as organic compounds is the compound acetonitrile, H3CCN. It is present in paint strippers.(a) Write the Lewis structure for acetonitrile, and indicate the direction of the dipole moment in the molecule.(b) Identify the hybrid orbitals used by the carbon atoms in the molecule to form σ bonds.(c) Describe the atomic orbitals that form the π bonds in the molecule. Note that it is not necessary to hybridize the nitrogen atom.arrow_forward(a) Sketch the molecular orbitals of the H2- ion and draw itsenergy-level diagram. (b) Write the electron configuration ofthe ion in terms of its MOs. (c) Calculate the bond order inH2-. (d) Suppose that the ion is excited by light, so that anelectron moves from a lower-energy to a higher-energy molecularorbital. Would you expect the excited-state H2- ion to bestable? (e) Which of the following statements about part (d) is correct: (i) The light excites an electron from a bonding orbitalto an antibonding orbital, (ii) The light excites an electronfrom an antibonding orbital to a bonding orbital, or (iii)In the excited state there are more bonding electrons thanantibonding electrons?arrow_forwardThe structure of caffeine is shown below. (a) Complete the Lewis structure. (b) How many pi bonds are present in caffeine? How many sigma bonds? (c) Identify the hybridization of the carbon atoms. (d) What is the value of the O-C-N angle?arrow_forward
- The molecule shown here is difluoromethane 1CH2F22, which isused as a refrigerant called R-32. (a) Based on the structure, howmany electron domains surround the C atom in this molecule?(b) Would the molecule have a nonzero dipole moment? (c) Ifthe molecule is polar, which of the following describes the directionof the overall dipole moment vector in the molecule:(i) from the carbon atom toward a fluorine atom, (ii) from thecarbon atom to a point midway between the fluorine atoms,(iii) from the carbon atom to a point midway between the hydrogenatoms, or (iv) from the carbon atom toward a hydrogenatom? [Sections 9.2 and 9.3]9.5arrow_forwardThe molecular orbitals depicted below are derived from 2p atomic orbitals in F₂⁺. (a) Give the orbital designations. (b) Which is occupied by at least one electron in F₂⁺? (c) Which is occupied by only one electron in F₂⁺?arrow_forward(a) Dihydrogen cation H2+ is commonly found in interstellar space. It can be generated by ionization of dihydrogen molecule H2. What electromagnetic radiation can be used to generate the H2+ cation? (b) Construct an energy level diagram for the molecular orbitals of the H2+ cation. What is the bond order of the HH bond in the H2+ cation? (c) Suggest a spectroscopic method for differentiation of H2 gas and the H2+ cation. Explain your answers.arrow_forward
- Acetylene (C2H2) has a tendency to lose two protons (H+) and form the carbide ion (C22−), which is present in a number of ionic compounds, such as CaC2 and MgC2. (a) What is the bond order of the carbide dianion C22−? (b) For comparison, what is the bond order of C2?arrow_forwardConsider the reaction BF3 + NH3 -> F3B-NH3 (a) Describe the changes in hybridization of the B and N atoms as a result of this reaction. (b) Describe the shapes of all the reactant molecules with their bond angles. (c) Draw the overall shape of the product molecule and identify the bond angles around B and N atoms. (d) What is the name of the bond between B and N. (e)Describe the bonding orbitals that make the B and F, B and N & N and H bonds in the product molecule.arrow_forwardCalcium carbide, CaC2,contains the acetylide ion, C22-.Sketch the molecular orbital energy'level diagram for the ion and the electron dot strucure. (a) How many net σ and π bonds does the ion have? (b) What is the carbon-carbon bond order? (c) Compare the valence bond and MO pictures with regard to the number of σ and π bonds and the bond order. (d) How has the bond order changed on adding electrons to C2 to obtain C22-? (e) Is the C22- ion paramagnetic?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning