DATA You have one object of each of these shapes, all with mass 0.840 kg: a uniform solid cylinder, a thin-walled hollow cylinder, a uniform solid sphere, and a thin-walled hollow sphere. You release each object from rest at the same vertical height h above the bottom of a long wooden ramp that is inclined at 35.0° from the horizontal. Each object rolls without slipping down the ramp. You measure the time t that it takes each one to reach the bottom of the ramp; Fig. P10.89 shows the results, (a) From the bar graphs, identify objects A through D by shape, (b) Which of objects A through D has the greatest total kinetic energy at the bottom of the ramp, or do all have the same kinetic energy? (c) Which of objects A through D has the greatest rotational kinetic energy 1 2 I ω 2 at the bottom of the ramp, or do all have the same rotational kinetic energy? (d) What minimum coefficient of static friction is required for all four objects to roll without slipping? Figure P10.89
DATA You have one object of each of these shapes, all with mass 0.840 kg: a uniform solid cylinder, a thin-walled hollow cylinder, a uniform solid sphere, and a thin-walled hollow sphere. You release each object from rest at the same vertical height h above the bottom of a long wooden ramp that is inclined at 35.0° from the horizontal. Each object rolls without slipping down the ramp. You measure the time t that it takes each one to reach the bottom of the ramp; Fig. P10.89 shows the results, (a) From the bar graphs, identify objects A through D by shape, (b) Which of objects A through D has the greatest total kinetic energy at the bottom of the ramp, or do all have the same kinetic energy? (c) Which of objects A through D has the greatest rotational kinetic energy 1 2 I ω 2 at the bottom of the ramp, or do all have the same rotational kinetic energy? (d) What minimum coefficient of static friction is required for all four objects to roll without slipping? Figure P10.89
DATA You have one object of each of these shapes, all with mass 0.840 kg: a uniform solid cylinder, a thin-walled hollow cylinder, a uniform solid sphere, and a thin-walled hollow sphere. You release each object from rest at the same vertical height h above the bottom of a long wooden ramp that is inclined at 35.0° from the horizontal. Each object rolls without slipping down the ramp. You measure the time t that it takes each one to reach the bottom of the ramp; Fig. P10.89 shows the results, (a) From the bar graphs, identify objects A through D by shape, (b) Which of objects A through D has the greatest total kinetic energy at the bottom of the ramp, or do all have the same kinetic energy? (c) Which of objects A through D has the greatest rotational kinetic energy
1
2
I
ω
2
at the bottom of the ramp, or do all have the same rotational kinetic energy? (d) What minimum coefficient of static friction is required for all four objects to roll without slipping?
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following.
(a) the time interval during which the ball is in motion
2R
(b) the ball's speed at the peak of its path
v=
Rg 2
√ sin 26, V 3
(c) the initial vertical component of its velocity
Rg
sin ei
sin 20
(d) its initial speed
Rg
√ sin 20
×
(e) the angle 6, expressed in terms of arctan of a fraction.
1
(f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height.
hmax
R2
(g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
Xmax
R√3
2
Chapter 10 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.