You are designing a system for moving aluminum cylinders from the ground to a loading dock. You use a sturdy wooden ramp that is 6.00 m long and inclined at 37.0° above the horizontal. Each cylinder is fitted with a light, frictionless yoke through its center, and a light (but strong) rope is attached to the yoke. Each cylinder is uniform and has mass 460 kg and radius 0.300 m. The cylinders are pulled up the ramp by applying a constant force F to the free end of the rope. F is parallel to the surface of the ramp and exerts no torque on the cylinder. The coefficient of static friction between the ramp surface and the cylinder is 0.120. (a) What is the largest magnitude F can have so that the cylinder still rolls without slipping as it moves up the ramp? (b) If the cylinder starts from rest at the bottom of the ramp and rolls without slipping as it moves up the ramp, what is the shortest time it can take the cylinder to reach the top of the ramp?
You are designing a system for moving aluminum cylinders from the ground to a loading dock. You use a sturdy wooden ramp that is 6.00 m long and inclined at 37.0° above the horizontal. Each cylinder is fitted with a light, frictionless yoke through its center, and a light (but strong) rope is attached to the yoke. Each cylinder is uniform and has mass 460 kg and radius 0.300 m. The cylinders are pulled up the ramp by applying a constant force F to the free end of the rope. F is parallel to the surface of the ramp and exerts no torque on the cylinder. The coefficient of static friction between the ramp surface and the cylinder is 0.120. (a) What is the largest magnitude F can have so that the cylinder still rolls without slipping as it moves up the ramp? (b) If the cylinder starts from rest at the bottom of the ramp and rolls without slipping as it moves up the ramp, what is the shortest time it can take the cylinder to reach the top of the ramp?
You are designing a system for moving aluminum cylinders from the ground to a loading dock. You use a sturdy wooden ramp that is 6.00 m long and inclined at 37.0° above the horizontal. Each cylinder is fitted with a light, frictionless yoke through its center, and a light (but strong) rope is attached to the yoke. Each cylinder is uniform and has mass 460 kg and radius 0.300 m. The cylinders are pulled up the ramp by applying a constant force F to the free end of the rope. F is parallel to the surface of the ramp and exerts no torque on the cylinder. The coefficient of static friction between the ramp surface and the cylinder is 0.120. (a) What is the largest magnitude F can have so that the cylinder still rolls without slipping as it moves up the ramp? (b) If the cylinder starts from rest at the bottom of the ramp and rolls without slipping as it moves up the ramp, what is the shortest time it can take the cylinder to reach the top of the ramp?
You toss a ball straight up by giving it an initial upward velocity of 18 m/s. What is the velocity of the ball 0.50 s after you released it? Define the positive y direction to be upward,
the direction that you toss the ball.
10:44 AM Fri Jan 31
O Better endurance
Limb end points travel less
D
Question 2
Take Quiz
1 pt:
Two springs are arranged in series, and the whole arrangement is pulled a vertical distance of 2
cm. If the force in Spring A is 10 N, what is the force in Spring B as a result of the
displacement?
05N
5 N
0.2 N
10 N
O2N
Question 3
1 pts
No chatgpt pls will upvote Already got wrong chatgpt
Chapter 10 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.