Concept Introduction:
Gibb’s free energy is a state function which predicts whether a process is spontaneous or not at conditions of constant pressure and temperature. Gibb’s free energy change for a process at constant temperature is defined as:
Where
Entropy is defined as the measure of randomness or disorder in a system.
Entropy of a system is defined statistically on a microscopic level. In statistical mechanics the number of microstates or energy states that is the number of ways in which these microscopic particles acquire same energy is determined.
The number of microstates for a particular energy is denoted as Omega (O). And the entropy is then related to number of microstates by the equation:
Where,
More random arrangements of particles of a system would increase the number of microstates possible for the system. And so entropy of any system increases if it moves towards more random distribution of particles constituting the system.
When a system is heated to a higher temperature, the total energy available to the molecules increases and some portion of molecules can now move at higher speeds. The system can now distribute its energy in more number of ways. Hence heating a system increases it entropy.
In a solid the particles are held together rigidly. When it is melted to form a liquid the particles gain energy and are free to move. The entropy of the system increases.
When you boil a liquid to form vapor, again the particles which are confined to move in a small space in a liquid are more randomly distributed in the vapor phase.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry for Engineering Students
- Which contains greater entropy, a quantity of frozen benzene or the same quantity of liquid benzene at the same temperature? Explain in terms of the dispersal of energy in the substance.arrow_forwardFor one day, keep a log of all the activities you undertake that consume Gibbs free energy. Distinguish betweenGibbs free energy provided by nutrient metabolism andthat provided by other energy resources.arrow_forwardWhat is entropy? Why is entropy important?arrow_forward
- Consider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the synthesis of ammonia? 3H2(g) + N2(g) 2NH3(g)arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the combustion of acetaldehyde? CH3CHO(l)+52O2(g)2CO2+2H2O(l)arrow_forward
- Consider the reaction of 1 mol H2(g) at 25C and 1 atm with 1 mol Br2(l) at the same temperature and pressure to produce gaseous HBr at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forwardDescribe how the standard entropy of hydrogen gas at 25C can be obtained from heat measurements.arrow_forwardUse data from Appendix D to calculate the standardentropy change at 25°C for the reaction CH3COOH(g)+NH3(g)CH3NH2(g)+CO2(g)+H2(g) Suppose that 1.00 mol each of solid acetamide, CH3CONH2(s), and water, H2O(l), react to give thesame products. Will the standard entropy change belarger or smaller than that calculated for the reactionin part (a)?arrow_forward
- Explain how the entropy of the universe increases when an aluminum metal can is made from aluminum ore. Thefirst step is to extract the ore, which is primarily a formof A12O3, from the ground. After it is purified by freeingit from oxides of silicon and iron, aluminum oxide ischanged to the metal by an input of electrical energy. 2Al2O3(s)electricalenergy4Al(s)+3O2(g)arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (Thermodynamic data for TNT are not in Appendix G.) 2C7H5N3O6(s) 3N2(g) + 5H2O() + 7C(s) + 7CO(g)arrow_forwardFor each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning