When polymers are recycled, the ends of the long chain polymer molecules tend to break off, and this process eventually results in a degradation of physical properties, rendering the cycled polymer unusable. Why the breaking off the end of the polymer molecules is favorable from the stand point of the entropy of the system is needs to be explained. Concept introduction: Entropy is explained as degree of randomness in a system. If there are more number of molecules more will be the entropy. In polymerization , monomers combined to form polymer, thus, molecules are in more ordered form and entropy of system decreases. Opposite to this, if polymers are recycled, due to breaking of long chains of polymer, molecules are no more in ordered form. Hence, entropy increases.
When polymers are recycled, the ends of the long chain polymer molecules tend to break off, and this process eventually results in a degradation of physical properties, rendering the cycled polymer unusable. Why the breaking off the end of the polymer molecules is favorable from the stand point of the entropy of the system is needs to be explained. Concept introduction: Entropy is explained as degree of randomness in a system. If there are more number of molecules more will be the entropy. In polymerization , monomers combined to form polymer, thus, molecules are in more ordered form and entropy of system decreases. Opposite to this, if polymers are recycled, due to breaking of long chains of polymer, molecules are no more in ordered form. Hence, entropy increases.
Solution Summary: The author explains that when polymers are recycled, the ends of the long chain polymer molecules tend to break off, and this process eventually results in a degradation of physical properties.
Definition Definition Chemical process in which one or more monomers combine to produce a very large chain-like molecule called a polymer. The functional groups present on the monomers and their steric effects are responsible for polymerization through a sequence of reactions that vary in complexity. There exists a stable covalent chemical bond between monomers that sets apart polymerization from other processes.
Chapter 10, Problem 10.65PAE
Interpretation Introduction
Interpretation:
When polymers are recycled, the ends of the long chain polymer molecules tend to break off, and this process eventually results in a degradation of physical properties, rendering the cycled polymer unusable. Why the breaking off the end of the polymer molecules is favorable from the stand point of the entropy of the system is needs to be explained.
Concept introduction:
Entropy is explained as degree of randomness in a system. If there are more number of molecules more will be the entropy. In polymerization, monomers combined to form polymer, thus, molecules are in more ordered form and entropy of system decreases. Opposite to this, if polymers are recycled, due to breaking of long chains of polymer, molecules are no more in ordered form. Hence, entropy increases.
In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3
On the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY