
Concept explainers
Interpretation:
Entropy changes in a process where first a sample of water is heated until it boils and then water vapor is heated from 400 K to 500 K at constant volume should be explained.
Concept Introduction:
Entropy is defined as the measure of randomness or disorder in a system.
Entropy of a system is defined statistically on a microscopic level. In statistical mechanics the number of microstates or energy states that is the number of ways in which these microscopic particles acquire same energy is determined.
The number of microstates for a particular energy is denoted as Omega (O). And the entropy is then related to number of microstates by the equation:
Where,
More random arrangements of particles of a system would increase the number microstates possible for the system. And so entropy of any system increases if it moves towards more random distribution of particles constituting the system.
Entropy of a system varies with temperature. In a system like water molecules are constantly in motion due to the energy available to them.
When a system is heated to a higher temperature, the total energy available to the molecules increases and some portion of molecules can now move at higher speeds. The system can now distribute its energy in more number of ways. Hence heating a system increases it entropy.
Solution:
a)
Yes when a sample of water is heated its entropy increases.
b)
Only the speed of individual molecules increases on raising the temperature. Since the overall volume is constant the positions that the molecules occupy remains same.
c)
On heating the system to a higher temperature, the total energy available to the molecules has increased, which increases the entropy.
d)
Yes when a sample of water vapor is heated from 400 K to 500 K at constant volume.
b)
Only the speed of individual molecules increases on raising the temperature. Since the overall volume is constant the positions that the molecules occupy remains same.
c)
On heating the system to a higher temperature, the total energy available to the molecules has increased, which increases the entropy.
a)

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
Chemistry for Engineering Students
- Please answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardPlease do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forward
- All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forwarde. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forward
- Help with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardCan you explain these two problems for mearrow_forward
- 个 ^ Blackboard x Organic Chemistry II Lecture (m x Aktiv Learning App x → C app.aktiv.com ← Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 28 of 35 :OH H HH KO Select to Edit Arrows CH CH₂OK, CH CH2OH 5+ H :0: Donearrow_forwardCan you explain those two problems for me please.arrow_forwardDo we need to draw the "ethyne" first for this problem? im confusedarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





