![Physics for Scientists and Engineers, Technology Update (No access codes included)](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_largeCoverImage.gif)
Concept explainers
An elevator system in a tall building consists of a 800-kg car and a 950-kg counterweight joined by a light cable of constant length that passers over a pulley of mass 280 kg. The pulley, called a sheave, is a solid cylinder of radius 0.700 m turning on a horizontal axle. The cable does not slip on the sheave. A number n of people, each of mass 80.0 kg, are riding in the elevator car, moving upward at 3.00 m/s and approaching the floor where the car should stop. As an energy-conservation measure, a computer disconnects the elevator motor at just the right moment so that t he sheave–car–counterweight system then coasts freely without friction and comes to rest at the floor desired. There it is caught by a simple latch rather than by a massive brake. (a) Determine the distance d the car coasts upward as a function of n. Evaluate the distance for (b) n = 2, (c) n = 12, and (d) n = 0. (e) For what integer values of n does the expression in part (a) apply? (f) Explain your answer to part (e). (g) If an infinite number of people could fit on the elevator, what is the value of d?
(a)
![Check Mark](/static/check-mark.png)
The distance
Answer to Problem 10.68AP
The distance
Explanation of Solution
The mass of car is
From the law of energy conservation,
Here,
Formula to calculate the total initial energy of the system is,
Here,
Write the expression for the initial translational kinetic energy of the elevator is,
Here,
Write the expression for the initial translational kinetic energy of the counterweight is,
Here,
Write the expression for the initial rotational kinetic energy of the sheave is,
Here,
Write the expression for the moment of inertia of the pulley is,
Here,
Write the expression for the initial angular speed of the pulley is,
Here,
Substitute
Substitute
Since at the end the system comes to rest hence all the kinetic energies will be zero only potential energy remains in the system.
Formula to calculate the total final energy of the system is,
Here,
Write the expression for the final potential energy of the elevator is,
Here,
Write the expression for the final potential energy of the counterweight is,
Here,
Since the sheave pulley remains at its position so its final potential energy is zero.
Substitute
Substitute
Formula to calculate the mass of the elevator is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the distance
(b)
![Check Mark](/static/check-mark.png)
The distance
Answer to Problem 10.68AP
The distance
Explanation of Solution
The expression for the distance
Substitute
Conclusion:
Therefore, the distance
(c)
![Check Mark](/static/check-mark.png)
The distance
Answer to Problem 10.68AP
The distance
Explanation of Solution
The expression for the distance
Substitute
Conclusion:
Therefore, the distance
(d)
![Check Mark](/static/check-mark.png)
The distance
Answer to Problem 10.68AP
The distance
Explanation of Solution
The expression for the distance
Substitute
Conclusion:
Therefore, the distance
(e)
![Check Mark](/static/check-mark.png)
The integral values of
Answer to Problem 10.68AP
The expression in part (a) is valid only when
Explanation of Solution
The expression for the distance
From the above expression, the distance
Conclusion:
Therefore, the expression in part (a) is valid only when
(f)
![Check Mark](/static/check-mark.png)
The explanation for the answer in part (e).
Answer to Problem 10.68AP
The mass of the elevator is less than the mass of the counterweight for the value of
Explanation of Solution
The expression for the distance
Substitute
Since the value of distance
Conclusion:
Therefore, the mass of the elevator is less than the mass of the counterweight for the value of
(g)
![Check Mark](/static/check-mark.png)
The value of
Answer to Problem 10.68AP
The value of
Explanation of Solution
The expression for the distance
Rearrange the above equation.
Substitute
Since the value of distance
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 10 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- 220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward220 volts is supplied across 1200 winding of the primary coil of the autotransformer.If 1650 windings are tapped, what voltage will be supplied to the primary coil of thehigh-voltage transformer?2. A kVp meter reads 86 kVp and the turns ratio of the high-voltage step-up transformeris 1200. What is the true voltage across the meter?3. The supply voltage from the autotransformer to the filament transformer is 60 volts. If theturns ratio of the filament transformer is 1/12, what is the filament voltage?4. If the current in the primary side of the filament transformer in question 3 were 0.5 A,what would be the filament current?5. The supply to a high-voltage step-up transformer with a turns ratio of 550 is 190 volts.What is the voltage across the x-ray tube?arrow_forward220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward
- Assume ax(u) is constant, then show thatarrow_forwardOne strain of bacteria was found to have a membrane potential of -120 mVmV at a pHpH of 7.5. A bacterium can be modeled as a 1.5-μmμm-diameter sphere. How many positive ions are needed on the exterior surface to establish this membrane potential? (There are an equal number of negative ions on the interior surface.) Assume that the membrane properties are the same as those of mammalian cells.arrow_forwardQ: Draw the fabrication layers of a transistor with metal and semiconductor MS junction (Schottkyj unction).arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)