This problem describes one experimental method for determining the moment of inertia of an irregularly shaped object such as the payload for a satellite. Figure P10.47 shows a counterweight of mass m suspended by a cord wound around a spool of radius r, forming part of a turntable supporting the object. The turntable can rotate without friction. When the counterweight is released from rest, it descends through a distance h, acquiring a speed v. Show that the moment of inertia I of the rotating apparatus (including the turntable) is mr2((2gh)/v2) – 1)

icon
Related questions
Question

This problem describes one experimental method for determining the moment of inertia of an irregularly shaped object such as the payload for a satellite. Figure P10.47 shows a counterweight of mass m suspended by a cord wound around a spool of radius r, forming part of a turntable supporting the object. The turntable can rotate without friction. When the counterweight is released from rest, it descends through a distance h, acquiring a speed v. Show that the moment of inertia I of the rotating apparatus (including the turntable) is mr2((2gh)/v2) – 1)

Figure P10.47
Transcribed Image Text:Figure P10.47
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer