You are designing a simple elevator system for an old warehouse that is being converted to loft apartments. A 22.500-N elevator is to be accelerated upward by connecting it to a counter-weight by means of a light (but strong!) cable passing over a solid uniform disk-shaped pulley. The cable does not slip where it is in contact with the surface of the pulley. There is no appreciable friction at the axle of the pulley, but its mass is 875 kg and it is 1.50 m in diameter, (a) What mass should the counterweight have so that it will accelerate the elevator upward through 6.75 m in the first 3.00 s, starting from rest? (b) What is the tension in the cable on each side of the pulley?
Figure P10.59
Trending nowThis is a popular solution!
Chapter 10 Solutions
UNIVERSITY PHYSICS UCI PKG
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Life in the Universe (4th Edition)
College Physics
Modern Physics
Cosmic Perspective Fundamentals
The Cosmic Perspective Fundamentals (2nd Edition)
- A solid cylinder (LaTeX: I\:=\frac{\:1}{2}MR^2 I = 1 2 M R 2 ) potter's wheel is a thick stone of radius 7 m with mass 5 kg. It freely rotates at 9 radian per second. The potter press a wet rag against the rim and exert a radially inward force of 10 N. If the coefficient of kinetic friction between the rag and the wheel is 0.6, find the time needed for the wheel to stop in seconds.arrow_forwardOn Mars (the gravitational acceleration is 62.4% lower than Earth), a participant in a strongman competition uses an old fashioned device to move a large load with only muscle power. A 1 ton (910 kg) bucket of rocks is suspended from a sturdy, lightweight beam . 85m from a pivot. The man lifts the beam at its end, 3.6m from the pivot, and holds it steady. how much force must the man apply? what is the force on the beam from the pivotarrow_forwardA wheel of radius 0.269 m, which we can model as a thin disk, is mounted on a frictionless horizontal axis. The mass of the wheel is 2.44 kg. A massless cord wrapped around the wheel is attached to a block of 4.16 kg that slides on a horizontal frictionless surface. If a horizontal force P with a magnitude of 10.1 N is applied to the block as shown below. If the wheel and block start at rest, and the block is moved through a displacement of 2.60 m what is the final angular velocity of the wheel in rad/s, assuming the cord does not slip. Parrow_forward
- The figure below shows a human arm that weighs 44.4 N. The arm is extended outward and is motionless. The gravitational force F on the arm acts at point A, a distance of 0.290 m from the shoulder joint, which is represented by point O. The shoulder pushes down and to the right on the humerus bone of the arm with a force F at point O, at an angle 8 as shown. The deltoid muscle pulls back on the arm toward the shoulder with a tension force F,. This tension force acts at a point 0.080 m to the right of point O, and it is directed up and to the left, at a 12.0° angle with respect to the horizontal. 0.080 m -0.290 m Find the magnitudes (in N) of the forces F, and F. (Enter your answers to the nearest whole number. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) N Narrow_forwardA uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.801 m and 1.25 kg, respectively. A force of constant magnitude F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of F that will accelerate the rod from rest to an angular speed of 6.49 rad/s in 8.61 s. F =arrow_forwardA garage door is mounted on an overhead rail as shown below. The wheels at A and B have rusted so that they do not roll, but rather slide along the track. The coefficient of kinetic friction is 0.50. The distance between the wheels is 2.00 m, and each are 0.50 from the vertical sides of the door. The door is uniform and weighs 977 N. It is pushed to the left at constant speed by an external horizontal force. If the distance h is 1.54 m: a. What is the vertical component of the force exerted on the wheel A by the track? b. What is the vertical component of the force exerted on the wheel B by the track? c. Find the maximum value h can have without causing one wheel to leave the track. A В K 2.00 m h k- 3.00 m Figure 3. The two wheel track of a rusted garage door.arrow_forward
- A uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.773 m and 1.27 kg, respectively. A force of constant magnitude F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of F that will accelerate the rod from rest to an angular speed of 6.05 rad/s in 8.43 s. F = about us careers privacy policy terms of use contact us help tv MacBook Airarrow_forwardJohn is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 20.0° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 407 N is exerted at the center of the wheel, which has a radius of 18.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) & (a) What force (in N) must John apply along the handles to just start the wheel over the brick? 1690.53 X Your response differs from the correct answer by more than 10%. Double check your calculations. N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude KN direction ° clockwise from the -x-axisarrow_forwardA uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.769 m and 1.19 kg, respectively. A force of constant magnitude F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of F that will accelerate the rod from rest to an angular speed of 6.45 rad/s in 8.49 s. N F = 23.15arrow_forward
- Consider the system shown in the figure below with m1 = 30.0 kg, m2 = 13.4 kg, R = 0.300 m, and the mass of the pulley M = 5.00 kg. Object m2 is resting on the floor, and object m1 is 4.50 m above the floor when it is released from rest. The pulley axis is frictionless. The cord is light, does not stretch, and does not slip on the pulley. a) Calculate the time interval required for m1 to hit the floor (in second). b) Calculate the time required again if the pulley were massless (in second)?arrow_forwardA participant in a "strongman" competition uses an old-fashioned device to move a large load with only muscle power. A 85-kg bucket of rocks is suspended from a sturdy, lightweight beam 0.78 m from a pivot. The man lifts the beam at its end, 3.0 m from the pivot, and holds it steady. Use g = 10 m/s2. What is the magnitude of the weight of the bucket, in Newtons? Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forwardWhat? This problem again? Not exactly. A block with mass m,ị = 3.00 kg sits on a horizontal table and is attached to a rope. The rope then passes over a MASSIVE pulley this time and is attached to a block of mass m2 = 2.00 kg, which hangs vertically (see picture). The coefficient of kinetic friction of the interface between the table and m, is 0.1. You may assume the pulley section is a disk with a mass of 2 kg. We will keep the pulley frictionless for brevity. Ideal disk pulley with mass Find the acceleration of the blocks using your choice of either Newton's Laws or the energy conservation method. Yes, I can actually read your minds from here; of 2 kg and the answer is no, you do not need the radius of the pulley.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON