DATA You are testing a small flywheel (radius 0.166 m) that will be used to store a small amount of energy. The flywheel is pivoted with low-friction bearings about a horizontal shaft through the flywheel’s center. A thin, light cord is wrapped multiple times around the rim of the flywheel. Your lab has a device that can apply a specified horizontal force F → to the free end of the cord. The device records both the magnitude of that force us a function of the horizontal distance the end of the cord has traveled and the time elapsed since the force was first applied. The flywheel is initially at rest, (a) You start with a lest run to determine the flywheel’s moment of inertia I . The magnitude F of the force is a constant 25.0 N, and the end of the rope moves 8.35 m in 2.00 s. What is I ? (b) In a second test, the flywheel again starts from rest but the free end of the rope travels 6.00 m; Fig. P10.90 shows the force magnitude F as a function of the distance d that the end of the rope has moved. What is the kinetic energy of the flywheel when d = 6.00 m? (c) What is the angular speed of flywheel, in rev/min, when d = 6.00 m? Figure P10.90
DATA You are testing a small flywheel (radius 0.166 m) that will be used to store a small amount of energy. The flywheel is pivoted with low-friction bearings about a horizontal shaft through the flywheel’s center. A thin, light cord is wrapped multiple times around the rim of the flywheel. Your lab has a device that can apply a specified horizontal force F → to the free end of the cord. The device records both the magnitude of that force us a function of the horizontal distance the end of the cord has traveled and the time elapsed since the force was first applied. The flywheel is initially at rest, (a) You start with a lest run to determine the flywheel’s moment of inertia I . The magnitude F of the force is a constant 25.0 N, and the end of the rope moves 8.35 m in 2.00 s. What is I ? (b) In a second test, the flywheel again starts from rest but the free end of the rope travels 6.00 m; Fig. P10.90 shows the force magnitude F as a function of the distance d that the end of the rope has moved. What is the kinetic energy of the flywheel when d = 6.00 m? (c) What is the angular speed of flywheel, in rev/min, when d = 6.00 m? Figure P10.90
DATA You are testing a small flywheel (radius 0.166 m) that will be used to store a small amount of energy. The flywheel is pivoted with low-friction bearings about a horizontal shaft through the flywheel’s center. A thin, light cord is wrapped multiple times around the rim of the flywheel. Your lab has a device that can apply a specified horizontal force
F
→
to the free end of the cord. The device records both the magnitude of that force us a function of the horizontal distance the end of the cord has traveled and the time elapsed since the force was first applied. The flywheel is initially at rest, (a) You start with a lest run to determine the flywheel’s moment of inertia I. The magnitude F of the force is a constant 25.0 N, and the end of the rope moves 8.35 m in 2.00 s. What is I? (b) In a second test, the flywheel again starts from rest but the free end of the rope travels 6.00 m; Fig. P10.90 shows the force magnitude F as a function of the distance d that the end of the rope has moved. What is the kinetic energy of the flywheel when d = 6.00 m? (c) What is the angular speed of flywheel, in rev/min, when d = 6.00 m?
220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns?
2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament?
3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage?
4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?
220 volts is supplied across 1200 winding of the primary coil of the autotransformer.If 1650 windings are tapped, what voltage will be supplied to the primary coil of thehigh-voltage transformer?2. A kVp meter reads 86 kVp and the turns ratio of the high-voltage step-up transformeris 1200. What is the true voltage across the meter?3. The supply voltage from the autotransformer to the filament transformer is 60 volts. If theturns ratio of the filament transformer is 1/12, what is the filament voltage?4. If the current in the primary side of the filament transformer in question 3 were 0.5 A,what would be the filament current?5. The supply to a high-voltage step-up transformer with a turns ratio of 550 is 190 volts.What is the voltage across the x-ray tube?
220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns?
2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament?
3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage?
4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.