You are designing a system for moving aluminum cylinders from the ground to a loading dock. You use a sturdy wooden ramp that is 6.00 m long and inclined at 37.0° above the horizontal. Each cylinder is fitted with a light, frictionless yoke through its center, and a light (but strong) rope is attached to the yoke. Each cylinder is uniform and has mass 460 kg and radius 0.300 m. The cylinders are pulled up the ramp by applying a constant force F to the free end of the rope. F is parallel to the surface of the ramp and exerts no torque on the cylinder. The coefficient of static friction between the ramp surface and the cylinder is 0.120. (a) What is the largest magnitude F can have so that the cylinder still rolls without slipping as it moves up the ramp? (b) If the cylinder starts from rest at the bottom of the ramp and rolls without slipping as it moves up the ramp, what is the shortest time it can take the cylinder to reach the top of the ramp?
You are designing a system for moving aluminum cylinders from the ground to a loading dock. You use a sturdy wooden ramp that is 6.00 m long and inclined at 37.0° above the horizontal. Each cylinder is fitted with a light, frictionless yoke through its center, and a light (but strong) rope is attached to the yoke. Each cylinder is uniform and has mass 460 kg and radius 0.300 m. The cylinders are pulled up the ramp by applying a constant force F to the free end of the rope. F is parallel to the surface of the ramp and exerts no torque on the cylinder. The coefficient of static friction between the ramp surface and the cylinder is 0.120. (a) What is the largest magnitude F can have so that the cylinder still rolls without slipping as it moves up the ramp? (b) If the cylinder starts from rest at the bottom of the ramp and rolls without slipping as it moves up the ramp, what is the shortest time it can take the cylinder to reach the top of the ramp?
You are designing a system for moving aluminum cylinders from the ground to a loading dock. You use a sturdy wooden ramp that is 6.00 m long and inclined at 37.0° above the horizontal. Each cylinder is fitted with a light, frictionless yoke through its center, and a light (but strong) rope is attached to the yoke. Each cylinder is uniform and has mass 460 kg and radius 0.300 m. The cylinders are pulled up the ramp by applying a constant force F to the free end of the rope. F is parallel to the surface of the ramp and exerts no torque on the cylinder. The coefficient of static friction between the ramp surface and the cylinder is 0.120. (a) What is the largest magnitude F can have so that the cylinder still rolls without slipping as it moves up the ramp? (b) If the cylinder starts from rest at the bottom of the ramp and rolls without slipping as it moves up the ramp, what is the shortest time it can take the cylinder to reach the top of the ramp?
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Starter the rule of significant
Please solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.