
Connect 1 Semester Access Card for General Chemistry: The Essential Concepts
7th Edition
ISBN: 9781259692543
Author: Raymond Chang Dr.; Kenneth Goldsby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.54QP
Interpretation Introduction
Interpretation:
By using molecular orbital theory, which of the given species has longer bond has to be explained.
Concept introduction:
Molecular orbital theory
The atomic orbitals involved in bonding actually combine to formnew orbitals. These new orbitals are called molecular orbitals.
- In molecular orbital theory, electrons shared by atoms in a molecule reside in the molecular orbitals.
- If longer the bond the weaker the bond and this rule will help you while analysing this concept.
- Higher the bond order, the more stable the bond.
To draw the molecular orbital diagram for the given species.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating
the reactants?
?A
Δ
O
• If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like.
• If your answer is no, check the box under the drawing area instead.
Explanation
Check
Click and drag to start drawing a structure.
2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilit
ku
F11
१
eq
ine teaching and × +
rn/takeAssignment/takeCovalentActivity.do?locator-assignment-take
[Review Topics]
[References]
Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.)
Keep the information page open for feedback reference.
The IUPAC name is
In progress
mit Answer
Retry Entire Group
5 more group attempts remaining
Cengage Learning | Cengage Technical Support
Save and Exit
Draw the molecules.
Chapter 10 Solutions
Connect 1 Semester Access Card for General Chemistry: The Essential Concepts
Ch. 10.1 - Practice Exercise Use the VSEPR model to predict...Ch. 10.1 - Review of Concepts
Which of the following...Ch. 10.2 - Prob. 1PECh. 10.2 - Prob. 1RCCh. 10.3 - Prob. 1RCCh. 10.4 - Prob. 1PECh. 10.4 - Prob. 2PECh. 10.4 - Prob. 1RCCh. 10.5 - Prob. 1PECh. 10.5 - Prob. 1RC
Ch. 10.6 - Prob. 1RCCh. 10.6 - Prob. 2RCCh. 10.6 - Prob. 1PECh. 10 - Prob. 10.1QPCh. 10 - Prob. 10.2QPCh. 10 - 10.3 How many atoms arc directly bonded to the...Ch. 10 - 10.4 Discuss the basic features of the VSEPR...Ch. 10 - 10.5 In the trigonal bipyramidal arrangement, why...Ch. 10 - 10.6 The geometry of CH4 could be square planar,...Ch. 10 - Prob. 10.7QPCh. 10 - Prob. 10.8QPCh. 10 - Prob. 10.9QPCh. 10 - Prob. 10.10QPCh. 10 - 10.11 Describe the geometry around each of the...Ch. 10 - 10.12 Which of these species are tetrahedral?...Ch. 10 - 10.13 Define dipole moment. What are the units and...Ch. 10 - 10.14 What is the relationship between the dipole...Ch. 10 - 10.15 Explain why an atom cannot have a permanent...Ch. 10 - 10.16 The bonds in beryllium hydride (BeH2)...Ch. 10 - 10.17 Referring to Table 10.3. arrange the...Ch. 10 - 10.18 The dipole moments of the hydrogen halides...Ch. 10 - 10.19 List these molecules in order of increasing...Ch. 10 - 10.20 Docs the molecule OCS have a higher or lower...Ch. 10 - 10.21 Which of these molecules has a higher dipole...Ch. 10 - 10.22 Arrange these compounds in order of...Ch. 10 - 10.23 What is valence bond theory? How does it...Ch. 10 - 10.24 Use valence bond theory to explain the...Ch. 10 - 10.25Draw a potential energy curve for the bond...Ch. 10 - 10.26 What is the hybridization of atomic...Ch. 10 - 10.27 How does a hybrid orbital differ from a pure...Ch. 10 - 10.28 What is the angle between these two hybrid...Ch. 10 - 10.29 How would you distinguish between a sigma...Ch. 10 - 10.30 Which of these pairs of atomic orbitals of...Ch. 10 - 10.31 The following potential energy curve...Ch. 10 - 10.32 What is the hybridization state of Si in...Ch. 10 - 10.33 Describe the change in hybridization (if...Ch. 10 - 10.34 Consider the reaction
Describe the changes...Ch. 10 - 10.35 What hybrid orbitals are used by nitrogen...Ch. 10 - Prob. 10.36QPCh. 10 - 10.37 Specify which hybrid orbitals are used by...Ch. 10 - 10.38 What is the hybridization state of the...Ch. 10 - 10.39 The allene molecule H2C=C=CH2 is linear (the...Ch. 10 - 10.40 Describe the hybridization of phosphorus in...Ch. 10 - 10.41 How many sigma bonds and pi bonds are there...Ch. 10 - 10.42 How many pi bonds and sigma bonds are there...Ch. 10 - 10.43 Give the formula of a cation comprised of...Ch. 10 - 10.44 Give the formula of an anion comprised of...Ch. 10 - 10.45 What is molecular orbital theory? How does...Ch. 10 - 10.46 Define these terms: bonding molecular...Ch. 10 - 10.47 Sketch the shapes of these molecular...Ch. 10 - 10.48 Explain the significance of bond order. Can...Ch. 10 - 10.49 Explain in molecular orbital terms the...Ch. 10 - Prob. 10.50QPCh. 10 - Prob. 10.51QPCh. 10 - Prob. 10.52QPCh. 10 - Prob. 10.53QPCh. 10 - Prob. 10.54QPCh. 10 - Prob. 10.55QPCh. 10 - 10.56 Compare the Lewis and molecular orbital...Ch. 10 - Prob. 10.57QPCh. 10 - 10.58 Compare the relative stability of these...Ch. 10 - Prob. 10.59QPCh. 10 - Prob. 10.60QPCh. 10 - Prob. 10.61QPCh. 10 - Prob. 10.62QPCh. 10 - Prob. 10.63QPCh. 10 - Prob. 10.64QPCh. 10 - Prob. 10.65QPCh. 10 - Prob. 10.66QPCh. 10 - Prob. 10.67QPCh. 10 - Prob. 10.68QPCh. 10 - 10.69 Draw Lewis structures and give the other...Ch. 10 - Prob. 10.70QPCh. 10 - Prob. 10.71QPCh. 10 - Prob. 10.72QPCh. 10 - Prob. 10.73QPCh. 10 - Prob. 10.74QPCh. 10 - Prob. 10.75QPCh. 10 - Prob. 10.76QPCh. 10 - Prob. 10.77QPCh. 10 - Prob. 10.78QPCh. 10 - Prob. 10.79QPCh. 10 - Prob. 10.80QPCh. 10 - Prob. 10.81QPCh. 10 - Prob. 10.82QPCh. 10 - Prob. 10.83QPCh. 10 - 10.84 The ionic character of the bond in a...Ch. 10 - Prob. 10.85QPCh. 10 - 10.86 Aluminum trichloride (AlCl3) is an...Ch. 10 - Prob. 10.87QPCh. 10 - Prob. 10.88QPCh. 10 - 10.90 Progesterone is a hormone responsible for...Ch. 10 - Prob. 10.91SPCh. 10 - Prob. 10.92SPCh. 10 - Prob. 10.93SPCh. 10 - 10.94 The molecule benzyne (C6H4) is a very...Ch. 10 - Prob. 10.95SPCh. 10 - 10.96 As mentioned in the chapter, the Lewis...Ch. 10 - Prob. 10.97SPCh. 10 - Prob. 10.98SPCh. 10 - Prob. 10.99SPCh. 10 - Prob. 10.100SPCh. 10 - Prob. 10.101SPCh. 10 - Prob. 10.102SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Draw the mechanism for the acid-catalyzed dehydration of 2-methyl-hexan-2-ol with arrows please.arrow_forward. Draw the products for addition reactions (label as major or minor) of the reaction between 2-methyl-2-butene and with following reactants : Steps to follow : A. These are addition reactions you need to break a double bond and make two products if possible. B. As of Markovnikov rule the hydrogen should go to that double bond carbon which has more hydrogen to make stable products or major product. Here is the link for additional help : https://study.com/academy/answer/predict-the-major-and-minor-products-of-2-methyl- 2-butene-with-hbr-as-an-electrophilic-addition-reaction-include-the-intermediate- reactions.html H₂C CH3 H H3C CH3 2-methyl-2-butene CH3 Same structure CH3 IENCESarrow_forwardDraw everything on a piece of paper including every single step and each name provided using carbons less than 3 please.arrow_forward
- Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. H The IUPAC name isarrow_forward[Review Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. The IUPAC name is Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forwardPlease draw.arrow_forward
- A chromatogram with ideal Gaussian bands has tR = 9.0 minutes and w1/2 = 2.0 minutes. Find the number of theoretical plates that are present, and calculate the height of each theoretical plate if the column is 10 centimeters long.arrow_forwardAn open tubular column has an inner diameter of 207 micrometers, and the thickness of the stationary phase on the inner wall is 0.50 micrometers. Unretained solute passes through in 63 seconds and a particular solute emerges at 433 seconds. Find the distribution constant for this solute and find the fraction of time spent in the stationary phase.arrow_forwardConsider a chromatography column in which Vs= Vm/5. Find the retention factor if Kd= 3 and Kd= 30.arrow_forward
- To improve chromatographic separation, you must: Increase the number of theoretical plates on the column. Increase the height of theoretical plates on the column. Increase both the number and height of theoretical plates on the column. Increasing the flow rate of the mobile phase would Increase longitudinal diffusion Increase broadening due to mass transfer Increase broadening due to multiple paths You can improve the separation of components in gas chromatography by: Rasing the temperature of the injection port Rasing the temperature of the column isothermally Rasing the temperature of the column using temperature programming In GC, separation between two different solutes occurs because the solutes have different solubilities in the mobile phase the solutes volatilize at different rates in the injector the solutes spend different amounts of time in the stationary phasearrow_forwardplease draw and example of the following: Show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardNaming and drawing secondary Write the systematic (IUPAC) name for each of the following organic molecules: CH3 Z structure CH3 CH2 CH2 N-CH3 CH3-CH2-CH2-CH-CH3 NH CH3-CH-CH2-CH2-CH2-CH2-CH2-CH3 Explanation Check ☐ name ☐ 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C Garrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY