
Concept explainers
Interpretation: The given species have to be arranged in the increasing order of their bond order.
Concept Introduction:
Bond order:
Bond order determines the number of bonds in the pair of two atoms. So, it is the quantitative measure of a bond.
The bond order can be calculated as follows:
Trends in the bond order:
The species with the negative charge means that electrons are getting added in the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital increases accordingly. Ultimately, the bond order decreases. Whereas, the species with the positive charge means that electrons are being removed from the anti-bonding molecular orbital. So the number of electrons in the anti-bonding molecular orbital decreases accordingly. Ultimately, the bond order increases.

Answer to Problem 10.102SP
The given species can be arranged in the increasing order of their bond order as follows:
Explanation of Solution
Given: The order of molecular orbitals of
The molecular orbitals of
The molecular orbital configuration of
Bond order of
The molecular orbitals of
The bond order of
Similarly, the bond orders can be calculated for each of the given species as follows:
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
Bond order of
The molecular orbitals of
The bond order of
The calculated bond orders can be tabulated as follows:
Given molecule | Bond order. |
1.5 | |
2 | |
2.5 | |
3 | |
2.5 |
Based on this tabulation, the given species can be arranged in the increasing order of their bond order as follows:
The given species have been arranged in the increasing order of their bond order.
Want to see more full solutions like this?
Chapter 10 Solutions
Connect 1 Semester Access Card for General Chemistry: The Essential Concepts
- Nonearrow_forwardNonearrow_forwardIn the solid state, oxalic acid occurs as a dihydrate with the formula H2C2O4 C+2H2O. Use this formula to calculate the formula weight of oxalic acid. Use the calculated formula weight and the number of moles (0.00504mol) of oxalic acid in each titrated unknown sample recorded in Table 6.4 to calculate the number of grams of pure oxalic acid dihydrate contained in each titrated unknown sample.arrow_forward
- 1. Consider a pair of elements with 2p and 4p valence orbitals (e.g., N and Se). Draw their (2p and 4p AO's) radial probability plots, and sketch their angular profiles. Then, consider these orbitals from the two atoms forming a homonuclear л-bond. Which element would have a stronger bond, and why? (4 points)arrow_forwardWrite the reaction and show the mechanism of the reaction. Include the mechanism for formation of the NO2+ 2. Explain, using resonance structures, why the meta isomer is formed. Draw possible resonance structures for ortho, meta and para.arrow_forwardNonearrow_forward
- 3. A molecular form of "dicarbon", C2, can be generated in gas phase. Its bond dissociation energy has been determined at 599 kJ/mol. Use molecular orbital theory to explain why energy of dissociation for C₂+ is 513 kJ/mol, and that for C2² is 818 kJ/mol. (10 points)arrow_forward9.73 g of lead(IV) chloride contains enough Cl- ions to make ____ g of magnesium chloride.arrow_forward6. a) C2's. Phosphorus pentafluoride PF5 belongs to D3h symmetry group. Draw the structure of the molecule, identify principal axis of rotation and perpendicular (4 points) b) assume that the principal axis of rotation is aligned with z axis, assign symmetry labels (such as a1, b2, etc.) to the following atomic orbitals of the P atom. (character table for this group is included in the Supplemental material). 3s 3pz (6 points) 3dz²arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





