Concept explainers
(a)
Interpretation:
The amount of each isotope present after 14 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 14.0 days,
Amount of Iodine-131 left = 62 mg
Amount of Xenon-131 formed = 62 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
Calculation:
After 14.0 days, the initial concentration of phosphorus-32 reduces to half of its initial concentration and converts to sulfur-32.
Thus,
Hence,
Amount of phosphorus-32 left = 62 mg
Amount of sulfur-32 formed = 124 mg − 62 mg = 62 mg
(b)
Interpretation:
The amount of each isotope present after 28 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 28.0 days,
Amount of Phosphorus-32 left = 32 mg
Amount of Sulfur-32 formed = 92 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 28.0 days
Calculation:
After 28 days, amount of phosphorus-32 would be defined by N(t),where t is 28.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 28.0 days = 32 mg
Amount of sulfur-32 formed after 28.0 days = 124 mg − 32 mg = 92 mg
(c)
Interpretation:
The amount of each isotope present after 42 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 42.0 days,
Amount of Phosphorus-32 left = 15.5 mg
Amount of Sulfur-32 formed = 108.5 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 42.0 days
Calculation:
After42 days, amount of phosphorus-32 would be defined by N(t),where t is 42.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 42.0 days = 15.5 mg
Amount of sulfur-32 formed after 42.0 days = 124 mg − 15.5 mg = 108.5 mg
(d)
Interpretation:
The amount of each isotope present after 56 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 56.0 days,
Amount of Phosphorus-32 left = 7.75 mg
Amount of Sulfur-32 formed = 116.25 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 56.0 days
Calculation:
After 56 days, amount of phosphorus-32 would be defined by N(t),where t is 56.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 56.0 days = 7.75 mg
Amount of sulfur-32 formed after 56.0 days = 124 mg − 7.75 mg =116.25 mg
Want to see more full solutions like this?
Chapter 10 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- + C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward→ Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




