Concept explainers
(a)
Interpretation:
The amount of each isotope present after 14 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 14.0 days,
Amount of Iodine-131 left = 62 mg
Amount of Xenon-131 formed = 62 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
Calculation:
After 14.0 days, the initial concentration of phosphorus-32 reduces to half of its initial concentration and converts to sulfur-32.
Thus,
Hence,
Amount of phosphorus-32 left = 62 mg
Amount of sulfur-32 formed = 124 mg − 62 mg = 62 mg
(b)
Interpretation:
The amount of each isotope present after 28 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 28.0 days,
Amount of Phosphorus-32 left = 32 mg
Amount of Sulfur-32 formed = 92 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 28.0 days
Calculation:
After 28 days, amount of phosphorus-32 would be defined by N(t),where t is 28.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 28.0 days = 32 mg
Amount of sulfur-32 formed after 28.0 days = 124 mg − 32 mg = 92 mg
(c)
Interpretation:
The amount of each isotope present after 42 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 42.0 days,
Amount of Phosphorus-32 left = 15.5 mg
Amount of Sulfur-32 formed = 108.5 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 42.0 days
Calculation:
After42 days, amount of phosphorus-32 would be defined by N(t),where t is 42.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 42.0 days = 15.5 mg
Amount of sulfur-32 formed after 42.0 days = 124 mg − 15.5 mg = 108.5 mg
(d)
Interpretation:
The amount of each isotope present after 56 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 10.50P
After 56.0 days,
Amount of Phosphorus-32 left = 7.75 mg
Amount of Sulfur-32 formed = 116.25 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 56.0 days
Calculation:
After 56 days, amount of phosphorus-32 would be defined by N(t),where t is 56.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 56.0 days = 7.75 mg
Amount of sulfur-32 formed after 56.0 days = 124 mg − 7.75 mg =116.25 mg
Want to see more full solutions like this?
Chapter 10 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- CHEM 310 Quiz 8 Organic Chemistry II Due: Tuesday, April 25th, at 11:59 pm. This quiz is open textbook / open notes - but you must work alone. You cannot use the internet or the solutions manual for the book. Scan in your work and record an explanation of your mechanism. You may record this any way that you like. One way would be to start an individual Zoom meeting, start recording, "share your screen" and then talk through the problem. This will be converted to an .mp4 file that you can upload into Canvas using the "record/upload media" feature. Pyridine, benzoic acid and benzene are dissolved in ethyl acetate. Design and provide a plan / flow chart for separating and isolating each of these components. Pyridine and benzene are liquids at room temperature. Benzoic acid is a solid. You have ethyl acetate, 2M NaOH, 2M HCI and anhydrous MgSO4 available, as well as all the glassware and equipment that you used in the organic lab this year. Provide accurate acid/base reactions for any…arrow_forwardCan anyone help me solve this step by step. Thank you in advaarrow_forwardPlease draw the mechanism for this Friedel-crafts acylation reaction using arrowsarrow_forward
- Draw the Fischer projection of D-fructose. Click and drag to start drawing a structure. Skip Part Check AP 14 tv SC F1 F2 80 F3 a F4 ! 2 # 3 CF F5 75 Ax MacBook Air 894 $ 5olo % Λ 6 > W F6 K F7 &arrow_forwardConsider this step in a radical reaction: Y What type of step is this? Check all that apply. Draw the products of the step on the right-hand side of the drawing area below. If more than one set of products is possible, draw any set. Also, draw the mechanism arrows on the left-hand side of the drawing area to show how this happens. ionization propagation initialization passivation none of the abovearrow_forward22.16 The following groups are ortho-para directors. (a) -C=CH₂ H (d) -Br (b) -NH2 (c) -OCHS Draw a contributing structure for the resonance-stabilized cation formed during elec- trophilic aromatic substitution that shows the role of each group in stabilizing the intermediate by further delocalizing its positive charge. 22.17 Predict the major product or products from treatment of each compound with Cl₁/FeCl₂- OH (b) NO2 CHO 22.18 How do you account for the fact that phenyl acetate is less reactive toward electro- philic aromatic substitution than anisole? Phenyl acetate Anisole CH (d)arrow_forward
- Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid.arrow_forwardHelp me solve this problem. Thank you in advance.arrow_forward22.7 Predict the monoalkylated products of the following reactions with benzene. (a) AlCl3 Ya (b) AlCl3 (c) H3PO4 (d) 22.8 Think-Pair-Share AICI3 The reaction below is a common electrophilic aromatic substitution. SO3 H₂SO4 SO₂H (a) Draw the reaction mechanism for this reaction using HSO,+ as the electrophile. (b) Sketch the reaction coordinate diagram, where the product is lower in energy than the starting reactant. (c) Which step in the reaction mechanism is highest in energy? Explain. (d) Which of the following reaction conditions could be used in an electrophilic aro- matic substitution with benzene to provide substituted phenyl derivatives? (i) AICI3 HNO3 H₂SO4 K2Cr2O7 (iii) H₂SO4 (iv) H₂PO₁arrow_forward
- Is an acid-base reaction the only type of reaction that would cause leavening products to rise?arrow_forwardHelp me understand this! Thank you in advance.arrow_forward22.22 For each compound, indicate which group on the ring is more strongly activating and then draw a structural formula of the major product formed by nitration of the compound. Br CHO (a) CH3 (b) (c) CHO CH3 SO₂H (d) ☑ OCHS NO₂ (e) (f) CO₂H NHCOCH3 NHCOCH, (h) CHS 22.23 The following molecules each contain two aromatic rings. (b) 000-100- H3C (a) (c) Which ring in each undergoes electrophilic aromatic substitution more readily? Draw the major product formed on nitration.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




