Chemistry: The Molecular Nature of Matter and Change
Chemistry: The Molecular Nature of Matter and Change
9th Edition
ISBN: 9781260477467
Author: Martin Silberberg
Publisher: Mcgraw-hill Higher Education (us)
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10, Problem 10.3P

(a)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (a) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, the element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(b)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (b) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(c)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (c) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(d)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (d) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(e)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (e) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(f)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (f) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(g)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (g) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

(h)

Interpretation Introduction

Interpretation:

Whether the X atom obeys the octet rule in the structure (h) or not is to be determined.

Concept introduction:

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, The element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

The total number of valence electrons is calculated as,

  Total valence electrons=[number of lone pair of electron+2(number of bond pair)]        (1)

Blurred answer
Students have asked these similar questions
8. The emission spectrum below for a one-electron (hydrogen-like) species in the gas phase shows all the lines, before they merge together, resulting from transitions to the ground state from higher energy states. Line A has a wavelength of 10.8 nm. BA Increasing wavelength, \ - a) What are the upper and lower principal quantum numbers corresponding to the lines labeled A and B? b) Identify the one-electron species that exhibits the spectrum.
Show work with explanation....don't give Ai generated solution
achieve.macmillanlearning.com Canvas EA eac h Hulu YouTube G 3 methyl cyclobutanol - Google Search Ranking Phenol Acidity Course -236 - Organic Chemistry - Mac... ← Assessment Completed 10 of 22 Questions 1 + Netflix paramount plus chem hw Galdehyde reaction with grignard reagent... b My Questions | bartleby M Inbox - chenteislegit@gmail.com - Gmail Due: Fri, Jan 31 Resources Solution Penalized ? Hint Submit Answer Use retrosynthetic analysis to suggest two paths to synthesize 2-methyl-3-hexanol using the Grignard reaction. (Click and drag the appropriate image to the correct position in the reactions.) Route 1 Aldehyde 1 or +98 Aldehyde 2 Route 2 Q6 +100 Solved in 1 attempt Q7 +95 Solved in 2 attempts Q8 +98 Unlimited attempts possible + + Grignard 1 OH H3O+ Grignard 2 Answer Bank Q9 +90 MgBr Unlimited attempts possible CH3CH2CH2MgBr Q10 Unlimited attempts Q11 ? ? +100 in 1 attempt 2-methyl-3-hexanol CH3CH2MgBr H H о H Attempt 3

Chapter 10 Solutions

Chemistry: The Molecular Nature of Matter and Change

Ch. 10.2 - Prob. 10.6AFPCh. 10.2 - Prob. 10.6BFPCh. 10.2 - Prob. 10.7AFPCh. 10.2 - Prob. 10.7BFPCh. 10.2 - Prob. 10.8AFPCh. 10.2 - Prob. 10.8BFPCh. 10.3 - Prob. 10.9AFPCh. 10.3 - Prob. 10.9BFPCh. 10 - Prob. 10.1PCh. 10 - When is a resonance hybrid needed to adequately...Ch. 10 - Prob. 10.3PCh. 10 - Prob. 10.4PCh. 10 - Draw a Lewis structure for (a) SiF4; (b) SeCl2;...Ch. 10 - Draw a Lewis structure for (a) ; (b) C2F4; (c)...Ch. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Prob. 10.9PCh. 10 - Draw Lewis structures of all the important...Ch. 10 - Prob. 10.11PCh. 10 - Draw Lewis structures of all the important...Ch. 10 - Prob. 10.13PCh. 10 - Prob. 10.14PCh. 10 - Draw the Lewis structure with lowest formal...Ch. 10 - Draw the Lewis structure with lowest formal...Ch. 10 - Prob. 10.17PCh. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - These species do not obey the octet rule. Draw a...Ch. 10 - These species do not obey the octet rule. Draw a...Ch. 10 - Molten beryllium chloride reacts with chloride ion...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Phosgene is a colorless, highly toxic gas that was...Ch. 10 - If you know the formula of a molecule or ion, what...Ch. 10 - In what situation is the name of the molecular...Ch. 10 - Prob. 10.29PCh. 10 - Prob. 10.30PCh. 10 - Consider the following molecular shapes. (a) Which...Ch. 10 - Use wedge-bond perspective drawings (if necessary)...Ch. 10 - Prob. 10.33PCh. 10 - Determine the electron-group arrangement,...Ch. 10 - Determine the electron-group arrangement,...Ch. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - Prob. 10.38PCh. 10 - Prob. 10.39PCh. 10 - Determine the shape, ideal bond angle(s), and the...Ch. 10 - Prob. 10.41PCh. 10 - Determine the shape around each central atom in...Ch. 10 - Prob. 10.43PCh. 10 - Prob. 10.44PCh. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Arrange the following ACln species in order of...Ch. 10 - State an ideal value for each of the bond angles...Ch. 10 - Prob. 10.49PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.51PCh. 10 - Prob. 10.52PCh. 10 - How can a molecule with polar covalent bonds not...Ch. 10 - Prob. 10.54PCh. 10 - Consider the molecules SCl2, F2, CS2, CF4, and...Ch. 10 - Consider the molecules BF3, PF3, BrF3, SF4, and...Ch. 10 - Prob. 10.57PCh. 10 - Prob. 10.58PCh. 10 - Prob. 10.59PCh. 10 - Prob. 10.60PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - Prob. 10.63PCh. 10 - Prob. 10.64PCh. 10 - Prob. 10.65PCh. 10 - Prob. 10.66PCh. 10 - When SO3 gains two electrons, forms. (a) Which...Ch. 10 - The actual bond angle in NO2 is 134.3°, and in it...Ch. 10 - Prob. 10.69PCh. 10 - Propylene oxide is used to make many products,...Ch. 10 - Prob. 10.71PCh. 10 - Prob. 10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - Prob. 10.76PCh. 10 - Prob. 10.77PCh. 10 - A gaseous compound has a composition by mass of...Ch. 10 - Prob. 10.79PCh. 10 - Prob. 10.80PCh. 10 - Prob. 10.81PCh. 10 - Prob. 10.82PCh. 10 - Pure HN3 (atom sequence HNNN) is explosive. In...Ch. 10 - Prob. 10.84PCh. 10 - Prob. 10.85PCh. 10 - Oxalic acid (H2C2O4) is found in toxic...Ch. 10 - Prob. 10.87PCh. 10 - Hydrazine (N2H4) is used as a rocket fuel because...Ch. 10 - Prob. 10.89PCh. 10 - Prob. 10.90PCh. 10 - Prob. 10.91PCh. 10 - Consider the following molecular shapes: Match...Ch. 10 - Prob. 10.93PCh. 10 - Prob. 10.94PCh. 10 - Prob. 10.95PCh. 10 - Phosphorus pentachloride, a key industrial...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY