Concept explainers
For each of the following molecules, state the bond angle (or bond angles, as appropriate) that you would expect to see on the central atom based on the simple VSEPR model. Would you expect the actual bond angles to be greater or less than this?
- a CCl4
- b SCl2
- c COCl2
- d AsH3
(a)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
(b)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
(c)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
(d)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
Want to see more full solutions like this?
Chapter 10 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Pheromone G of the maize stalk borer, chilo partelus, can be synthesized based on the partial scheme shown below. Complete the scheme by identifying the structures of the intermediate compounds A, B, C, D, E, F and pheromone G. Indicate stereochemistry where relevantarrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forward
- Complete the following reaction by identifying the principle organic product of the reactionarrow_forwardDenote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning