Elementary Principles of Chemical Processes 4e Binder Ready Version + WileyPLUS Registration Card (Wiley Plus Products)
Elementary Principles of Chemical Processes 4e Binder Ready Version + WileyPLUS Registration Card (Wiley Plus Products)
4th Edition
ISBN: 9781119231240
Author: Richard M. Felder
Publisher: Wiley (WileyPLUS Products)
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.29P

A steam coil is immersed in a stirred tank. Saturated steam at 7.50 bar condenses within the coil, and the condensate emerges at its saturation temperature. A solvent with a heat capacity of 2.30 kJ/(kg? °C) is fed to the tank at a steady rate of 12.0kg/min and a temperature of 25°C, and the heated solvent is discharged at the same flow rate. The tank is initially filled with 760 kg of solvent at 25°C, at which point the flows of both steam and solvent are commenced. The rate at which heat is transferred from the steam coil to the solvent is given by the expression

   Q ˙ = U T ( T s t e a m T )

where UA (the product of a heat transfer coefficient and the coil surface area through which the heat is transferred ) equals 11.5 kJ/(min?°C). The tank is well stirred, so that the temperature of the contents is spatially uniform and equals the outlet temperature.

  1. Prove that an energy balance on the tank contents reduces to the equation given below and supply an initial condition.

   d T d t = 1.50 ° C / min 0.0224 T

  1. Without integrating the equation, calculate the steady-state value of T and sketch the expected plot of T versus t, labeling the values of Tbat t = 0 and t ? 8.

  • Integrate the balance equation to obtain an expression for T(t) and calculate the solvent temperature after 40 minutes.
  • The tank is shut down for routine maintenance, and a technician notices that a thin mineral scale has formed on the outside of the steam coil. The coil is treated with a mild acid that removes the scale and reinstalled in the tank. The process described above is run again with the same steam conditions, solvent flow' rate, and mass of solvent charged to the tank, and the temperature after 40 minutes is 55°C instead of the value calculated in Part (c). One of the system variables listed in the problem statement must have changed as a result of the change in the stirrer. Which variable would you guess it to be, and by what percentage of its initial value did it change?
  • Blurred answer
    Students have asked these similar questions
    Hydrogen (H₂) is considered a clean energy carrier. For its use as a fuel, hydrogen is stored at 5 bar insidea cylindrical tank made of nickel (Ni) with 7 cm inner diameter, 1.2 mm thickness, and the length of L. Thetank is maintained at 358 K. Unfortunately, a small amount of hydrogen diffuses out of the tank, slowlydepleting its contents. You may assume that the hydrogen pressure outside the tank is essentially zero andconvective resistance inside and outside of the cylinder is negligible.• Solubility of H2 in Ni at 358 K = 0.00901 kmol/m3·bar• DH2, Ni at 358 K = 1.2 x 10-12 m2/sCalculate the maximum length of the nickel tank wall to ensure that the hydrogen loss does not exceed0.01 kg per year.
    You just took out a cold soda can (at 1 oC) from the refrigerator. Calculate thetemperature of the soda can after the can is placed in a room (at 31 oC, h = 100 W/m2-K) for 60 mins (we all know that soda tastes much better when it is cold!). • k = 0.617 W/m-K, density = 996 kg/m3, Cp = 4178 J/Kg-K• Height = 10 cm & Diameter = 5 cmCalculate the temperature of the soda can surface at the middle point of the heightusing 2-D analysis.
    A thick nickel wall is exposed to pure 5 bar H2(g) at 85 oC on one side of its surface (13 pts).(a) Assuming thermodynamic gas-solid equilibrium, calculate the H2 concentration at the surface ofthe nickel wall. (b) Assuming that the concentration of H2 at the surface is constant, determine the concentration ofH2 at the penetration depth in percentage of its concentration at the wall surface

    Additional Engineering Textbook Solutions

    Find more solutions based on key concepts
    What is the difference between a text file and a binary file?

    Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)

    Determine the magnitude of the resultant force acting on the plate and its direction, measured counter-clockwis...

    INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)

    1‘21 Same as Problem 1.20, excepi the anicle should be on safety as related to su rveying-

    Elementary Surveying: An Introduction To Geomatics (15th Edition)

    Knowledge Booster
    Background pattern image
    Chemical Engineering
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
    Similar questions
    SEE MORE QUESTIONS
    Recommended textbooks for you
    Text book image
    Introduction to Chemical Engineering Thermodynami...
    Chemical Engineering
    ISBN:9781259696527
    Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
    Publisher:McGraw-Hill Education
    Text book image
    Elementary Principles of Chemical Processes, Bind...
    Chemical Engineering
    ISBN:9781118431221
    Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
    Publisher:WILEY
    Text book image
    Elements of Chemical Reaction Engineering (5th Ed...
    Chemical Engineering
    ISBN:9780133887518
    Author:H. Scott Fogler
    Publisher:Prentice Hall
    Text book image
    Process Dynamics and Control, 4e
    Chemical Engineering
    ISBN:9781119285915
    Author:Seborg
    Publisher:WILEY
    Text book image
    Industrial Plastics: Theory and Applications
    Chemical Engineering
    ISBN:9781285061238
    Author:Lokensgard, Erik
    Publisher:Delmar Cengage Learning
    Text book image
    Unit Operations of Chemical Engineering
    Chemical Engineering
    ISBN:9780072848236
    Author:Warren McCabe, Julian C. Smith, Peter Harriott
    Publisher:McGraw-Hill Companies, The
    Introduction to Nonreactive Processes Without Phase Change; Author: NPTEL-NOC IITM;https://www.youtube.com/watch?v=1Okp7895M6I;License: Standard YouTube License, CC-BY