Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
Question
100%
Book Icon
Chapter 10, Problem 10.25P

(a)

Interpretation Introduction

Interpretation:

Estimation of the fugacity for ethylene and propylene in a mixture. Also estimate fugaciy coefficient for both gases in the mixture through the application of Eq. 10.63

Concept introduction:

The calculation of fugacity and fugacity coefficient of gases in the gas mixture is possible by using different correlation given as follows:

The fugacity coefficient for gas can be calculated by the equation given in the book as follows:

  ϕk^=exp[PRT[Bk,k+12ij y i y j( 2δi,k δi,j )]]

Where,

  δi,j=2Bi,jBi,iBj,jBi,j=RT c i,jP c i,j[Bi,j0+ωi,jBi,j1]Bi,j0=0.0830.422( T r i,j )1.6Bi,j1=0.1390.172( T r i,j )4.2ωi,j=ωi+ωj2Tci,j=T c i.T c jZci,j=Z c i+Z c j2VCi,j=[ ( V ci ) 1/3+ ( V cj ) 1/32]3Pci,j=Z c i,jRT c i,jV C i,j

ϕi^ = Fugacity coefficient of gases

Pci,j = Critical pressure of gases

Vci,j = Volume of gases

T = temperature

B0 and B1 are the correlation coefficient given in the book.

  Pr = Reduced pressure

  Pr=PisatPc

Where,

Pc = Critical pressure

Similarly, Tr = reduced temperature = Tri,j=TTCi,j

The fugacity of gases can be calculated by the definition of fugacity coefficient that is fugacity coefficient is the ratio of fugacity and pressure.

  ϕi^= f i^Pfi^=ϕi^×P

(a)

Expert Solution
Check Mark

Answer to Problem 10.25P

Fugacity and fugacity coefficient of ethylene are 10.0485 bar and 0.957, respectively.

Fugacity and fugacity coefficient of propylene are 17.0625 bar and 0.875, respectively.

Explanation of Solution

Refer APPENDIX-B and Table-B.1 to determine critical properties and acentric factor of ethylene(1)/Propylene2) as:

    Component Pc (bar) Tc (K) Vc (cm3/mol)

      ω

    Zc
    Ethylene (1) 50.40 282.3 131 0.087 0.281
    Propylene (2) 46.65 365.6 188.4 0.140 0.289

Where,

Pc = critical pressure

Tc = critical temperature

Vc = critical volume

Zc = critical compressibility factor

  ω = eccentric factor

From the properties derived above, we can calculate the reduced pressure and temperature as follows:

Pressure P = 30 bar (given in question) and Temperature (T) = 1500C or 423.15K (given)

Y1= 0.35 (given)

So,

y2=1y1y2=10.35y2=0.65

Reduced temperature for both gases can be calculated as:

  Tci,j=T c i.T c jTc1,1=T c 1.T c 1Tc1,1=282.3×282.3Tc1,1=282.3KTc1,2=T c 1.T c 2Tc1,2=282.3×365.6Tc1,2=321.26KTc2,1=T c 1.T c 2Tc2,1=282.3×365.6Tc2,1=321.26KTc2,2=T c 2.T c 2Tc2,2=365.6×365.6Tc2,2=365.6KTci,j=( 282.3 321.26 321.26 365.6)

Similar to the above calculated matrix we will calculate the reduced temperature as follows:

  Tri,j=( 423.15282.3 423.15321.26 423.15321.26 423.15365.6 )Tri,j=( 1.499 1.317 1.317 1.157)

Critical volume of both the gases in the mixture can be calculated as given below:

With the help of critical volume and critical temperature, critical pressure of gases in the mixture can be calculated as follows:

  Pci,j=Zci,jRTci,jVCi,j

The reduced compressibility factor can be calculated as:

  Zci,j=Z c i+Z c j2Zci,j=( Z c1 + Z c1 2 Z c1 + Z c2 2 Z c2 + Z c1 2 Z c2 + Z c2 2 )Zci,j=( 0.281+0.2812 0.281+0.2892 0.289+0.2812 0.289+0.2892 )Zci,j=( 0.281 0.285 0.285 0.289)

After putting all values in the critical pressure formula, we will get:

  Pci,j=Z c i,jRT c i,jV C i,jPci,j=( 50.345 48.19 48.19 46.63)

At this calculated value of reduced temperature, we can calculate correlation constant as:

  Bi,j0=0.0830.422( T r i,j )1.6Bi,j0=( 0.138 0.189 0.189 0.251)Bi,j1=0.1390.172( T r i,j )4.2Bi,j1=( 0.108 0.085 0.085 0.046)

Overall correlation constant value in gas mixture can be calculated by equation:

  Bi,j=RTci,jPci,j[Bi,j0+ωi,jBi,j1]

  ωi,j=ωi+ωj2ωi,j=( 0.087 0.114 0.114 0.14)

  Bi,j=RT c i,jP c i,j[Bi,j0+ωi,jBi,j1]Bi,j=( 59.892 99.181 99.181 159.43)

  δi,j=2Bi,jBi,iBj,jδi,j=( 0 20.96 20.96 0)

Using above calculated values fugacity coefficient of gases calculated as given below:

  ϕk^=exp[PRT[Bk,k+12i j yi yj (2 δ i,k δ i,j )]]ϕ1^=exp[PRT[B1,1+12[ y 1 y 1 ( 2δ 1,1δ 1,1 )+ y 1 y 2 ( 2δ 1,1δ 1,2 ) + y 2 y 1 ( 2δ 2,1δ 2,1 )+ y 2 y 2 ( 2δ 2,1δ 2,2 )]]]ϕ1^=exp[3083.14×423.15[59.892+12[ ( 0.35×0.35 )( ( 2×0)0 ) +( 0.35×0.65 )( ( 2×0)20.96 ) +( 0.65×0.35 )( ( 2×20.96)20.96 ) +( 0.65×0.65 )( ( 2×20.96)0 )]]]ϕ1^=0.957

Similarly, we can calculate fugacity coefficient for second species propylene:

  ϕk^=exp[PRT[Bk,k+12i j yi yj (2 δ i,k δ i,j )]]ϕ2^=exp[PRT[B1,1+12[ y 1 y 1 ( 2δ 1,2δ 1,1 )+ y 1 y 2 ( 2δ 1,2δ 1,2 ) + y 2 y 1 ( 2δ 2,2δ 2,1 )+ y 2 y 2 ( 2δ 2,2δ 2,2 )]]]ϕ2^=0.875

Now finally we can estimate the fugacity of both gases by just multiplying P with derived fugacity coefficient values:

  ϕi^= f i^yi×Pif1^=ϕ1^×y1×P1f1^=0.957×0.35×30f1^=10.0485barf2^=ϕ2^×y2×P2f2^=0.875×(10.35)×30f2^=17.0625bar

Therefore fugacity of ethylene is 10.0485 bar and fugacity of propylene is 17.0625 bar in the gas mixture.

(b)

Interpretation Introduction

Interpretation:

Estimation of the fugacity for ethylene and propylene in a ideal solution. Also estimate fugaciy coefficient for both gases in the solution by assuming that mixture as an ideal solution.

Concept introduction:

The calculation of fugacity and fugacity coefficient of gases in the ideal solution mixture is similar to a pure species mixture or an ideal gas mixture only difference is the replacement of yi with xi and calculation possible by using different correlation given as follows:

Fugacity coefficient for gases in ideal solution can be calculated by the equation given in the book as follows:

  ϕ^kid=exp[PrkTr k,k[Bk,k0+ωkkBk,k1]]

Where,

  Bk,k0=0.0830.422( T r k,k )1.6Bk,k1=0.1390.172( T r k,k )4.2

ϕkid^ = Fugacity coefficient of gases in ideal solution

Trkk = reduced temperature = Trk,k=TTCk,k

The fugacity of gases in ideal solution can be calculated by the definition of fugacity coefficient that is fugacity coefficient is the ratio of fugacity and pressure.

  ϕ iid^= f i id^xiPf iid^=ϕ iid^×xi×P

(b)

Expert Solution
Check Mark

Answer to Problem 10.25P

Fugacity and fugacity coefficient of ethylene are 9.975 bar and 0.95, respectively.

Fugacity and fugacity coefficient of propylene are 17.0235 bar and 0.873, respectively.

Explanation of Solution

Refer APPENDIX-B and Table-B.1 to determine critical properties and acentric factor of ethylene(1)/Propylene2) as:

    Component Pc (bar) Tc (K) Vc (cm3/mol)

      ω

    Zc
    Ethylene (1) 50.40 282.3 131 0.087 0.281
    Propylene (2) 46.65 365.6 188.4 0.140 0.289

Where,

Pc = critical pressure

Tc = critical temperature

Vc = critical volume

Zc = critical compressibility factor

  ω = eccentric factor

From the properties derived above, we can calculate the reduced pressure and temperature as follows:

Pressure P = 30 bar (given in question) and Temperature (T) = 1500C or 423.15K (given)

x1= 0.35 (given)

So,

x2=1x1x2=10.35x2=0.65

Reduced temperature of gases in the mixture can be calculated as:

  Tck,k=T c k.T c kTc1,1=T c 1.T c 1Tc1,1=282.3×282.3Tc1,1=282.3KTc2,2=T c 2.T c 2Tc2,2=365.6×365.6Tc2,2=365.6KTck,k=(282.3365.6)

Similar to the above calculated matrix we will calculate the reduced temperature as follows:

  Trk,k=( 423.15 282.3 423.15 365.6)Trk,k=(1.49891.1574)

The critical volume of both the gases in the ideal mixture can be calculated as given below:

  VCk,k=[ ( V ck ) 1/3+ ( V ck ) 1/32]3VCk,k=( [ (V c 1 ) 1/3+ (V c 1 ) 1/32 ] 3 [ (V c 2 ) 1/3+ (V c 2 ) 1/32 ] 3)VCk,k=(131188.4)

With the help of critical volume and critical temperature, critical temperature of gases in the mixture can be calculated as follows:

  Pck,k=Zck,kRTck,kVCk,k

The reduced compressibility factor can be calculated as:

  Zck,k=Z c k+Z c k2Zck,k=( Z c 1 +Z c 1 2 Z c 2 +Z c 2 2)Zck,k=( 0.281+0.281 2 0.289+0.289 2)Zck,k=(0.2810.289)

After putting all values in the critical pressure formula, we will get:

  Pck,k=Z c k,kRT c k,kV C k,kPck,k=(50.34546.63)

Reduced pressure will be:

  Prk,k=PP c k,kPrk,k=(0.5950.643)

At this calculated value of reduced temperature, we can calculate correlation constant as:

  Bk,k0=0.0830.422( T r k,k )1.6Bk,k0=(0.1380.251)Bk,k1=0.1390.172( T r k,k )4.2Bk,k1=(0.1080.046)

Accentric factor for both the species in ideal gas mixture calculated by the equation given below:

  ωi,j=ωi+ωj2ωi,j=(0.0870.14)

Using above calculated values fugacity coefficient of gases in ideal solution can be calculated as given below:

  ϕ^kid=exp[P r k T r k,k [B k,k0+ωkkB k,k1]]ϕ^1id=exp[P r 1 T r 1,1 [B 1,10+ω1,1B 1,11]]ϕ^1id=exp[0.5951.4989[0.138+(0.087×0.108)]]ϕ^1id=0.95

Similarly, we can calculate fugacity coefficient for second species propylene:

  ϕ^kid=exp[P r k T r k,k [B k,k0+ωkkB k,k1]]ϕ^2id=exp[P r 2 T r 2,2 [B 2,20+ω2,2B 2,21]]ϕ^2id=exp[0.6431.157[0.251+(0.14×0.046)]]ϕ^2id=0.873

Now finally we can estimate the fugacity of both gases in ideal solution using equation (10.52) as follows:

  ϕ iid^= f i id^xiPf iid^=ϕ iid^×xi×Pf iid^=0.35×0.95×30f 1id^=9.975barf 2id^=ϕ 2id^×x2×Pf 2id^=(10.35)×0.873×30f 2id^=17.0235bar

Therefore fugacity of ethylene is 9.975 bar and fugacity of propylene is 17.0235 bar in the ideal solution.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. Show that the fraction, F, of the energy released from a supercritical chain reaction that originates in the final m generations of the chain is given approximately by F= 1 km provided the total number of generations is large.
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP    A solution containing 7.5% sulfuric acid by weight at 70 °F is concentrated to 45% by weight by evaporating water. The concentrated solution and the water vapor exit the evaporator at 170 °F and 1 atm. Calculate the rate at which heat must be transferred to the evaporator to process 1500 lbm/hr of the feed solution to the evaporator. It is recommended to use the enthalpy-concentration diagram for sulfuric acid from Chapter 8 of Felder's book or an enthalpy-concentration diagram for sulfuric acid found in another unit operations book or chemical engineering manual such as Perry's.
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP   Suppose that the system designed in problem 33 of the Thermodynamics II problem set from UAM-Azcapotzalco is relocated to another area near the sea, specifically, Ciudad del Carmen, Campeche. Recalculate the compressor-cooler system for the new environmental conditions. Make the considerations you deem logical in redesigning your system. Indicate the references or sources where you obtained your data.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The