The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 6RQ
Why are light-years more convenient than miles, kilometers, or AU for measuring the distances to stars and galaxies?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the number of miles in a light-year, using 1.86 105 mi/s as the speed of light. (Hint: The number of seconds in a year, 365 days, will be useful.) Answer in mi/y
Recall that Hubble’s Law is given by V=HR; this means that H has units of inverse seconds (1/sec). A convenient laboratory set of units is to give H in km per sec per megaparsec. A parsec is 3.26 light years and the speed of light is 3 X 105 km/sec. Use 3.156 X 107 sec/yr. The first data off the then new Hubble Space telescope suggested a value of H equal to 108 km per sec per megaparsec. What is H in inverse seconds? Hint divide by the number of km in a megaparsec.
What is the number of miles in a light-year, using (see picture) mi/s as the speed of light?
I know the number of seconds in a year and 365 days will help but confused on how to put it in the equation.
Chapter 1 Solutions
The Solar System
Ch. 1 - Prob. 1RQCh. 1 - What is the largest dimension of which you have...Ch. 1 - What is the difference between the Solar System,...Ch. 1 - What is the difference between the Moon and a...Ch. 1 - Prob. 5RQCh. 1 - Why are light-years more convenient than miles,...Ch. 1 - Why is it difficult to detect planets orbiting...Ch. 1 - Prob. 8RQCh. 1 - What is the difference between the Milky Way and...Ch. 1 - What are the Milky Way Galaxys spiral arms?
Ch. 1 - Prob. 11RQCh. 1 - Where are you in the Universe? If you had to give...Ch. 1 - Prob. 13RQCh. 1 - Prob. 14RQCh. 1 - Prob. 15RQCh. 1 - How do we know? How does the scientific method...Ch. 1 - The equatorial diameter of Earth is 7928 miles. If...Ch. 1 - Prob. 2PCh. 1 - One astronomical unit (AU) is about 1.5 108 km....Ch. 1 - A typical galaxy is shown on the first page of the...Ch. 1 - Prob. 5PCh. 1 - Venus orbits 0.72 AU from the Sun. What is that...Ch. 1 - Light from the Sun takes 8 minutes to reach Earth....Ch. 1 - The Sun is almost 400 times farther from Earth...Ch. 1 - If the speed of light is 3.0 × 105 km/s, how many...Ch. 1 - Prob. 10PCh. 1 - Prob. 11PCh. 1 - Prob. 12PCh. 1 - How many galaxies like our own would it take if...Ch. 1 - Arrange the following in order of increasing size:...Ch. 1 - Arrange the following in order of increasing...Ch. 1 - Prob. 3SPCh. 1 - Prob. 4SPCh. 1 - Look at the center of Figure 1–4. Approximately...Ch. 1 - Look at Figure 1-6. How can you tell that Mercury...Ch. 1 - Prob. 3LLCh. 1 - Look at Figure 1-9. Would you say that the...Ch. 1 - Prob. 5LLCh. 1 - Prob. 6LL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The distance from the Sun to the nearest star is about 4 1016 m. The Milky Way galaxy (Fig. P1.31) is roughly a disk of diameter 1021 in and thickness 1019 m. Find the order of magnitude of the number of stars in the Milky Way. Assume the distance between the Sun and our nearest neighbor is typical. Figure P1.31 The Milky Way galaxy.arrow_forwardIf the speed of light is 3.0 105 km/s, how many kilometers are in a light-year? How many meters? (Hint: First look up or calculate how many seconds are in a year.)arrow_forwardCalculate the number of miles in a light-year, using 1.86 105 mi/s as the speed of light. (Hint: The number of seconds in a year, 365 days, will be useful.) Incorrect: Your answer is incorrect. mi/yarrow_forward
- The nearest star to our sun is Proxima Centauri, at a distance of 4.3 light-years from the Sun. A light-year is the distance that light travels in one year (365 days). How far away, in kilometers, is Proxima Centauri from the Sun?Express your answer using two significant figures.arrow_forwardUsing a single dimensional equation, estimate the number of steps it would take a person with a step length of 2.65 ft to walk from the Earth to Alpha Centauri a distance of 4.37 light-years. The speed of light is 1.86282 x 105 miles/s. Number of Steps = Enter your answer in accordance to the question statement x 1017arrow_forwardOn a 1-to-10^19 scale our Milky Way galaxy would just about fit on a soccer field. On this scale, how far is the distance from the sun to alpha centauri (one of the closest stars to the sun, at a distance of 4.4 light years).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY