The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 6P
Venus orbits 0.72 AU from the Sun. What is that distance in kilometers? (Hint: See Problem 3.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two planets orbit the same star in circular orbits. One orbits at a distance of 167AU and takes 1.5days to complete an orbit. The second planet orbits at a distance of 4.7 AU. How long does it take the the second planet to complete one orbit? answer in days.
A planet's speed in orbit is given by V = (30 km/s)[(2/r)-(1/a)]0.5 where V is the planet's velocity, r is the distance in AU's from the Sun at that instant, and a is the semimajor axis of its orbit.
Calculate the Earth's velocity in its orbit (assume it is circular):
What is the velocity of Mars at a distance of 1.41 AU from the Sun?
What is the spacecraft's velocity when it is 1 AU from the Sun (after launch from the Earth)?
What additional velocity does the launch burn have to give to the spacecraft? (i.e. What is the difference between the Earth's velocity and the velocity the spacecraft needs to have?)
How fast will the spacecraft be traveling when it reaches Mars?
Does the spacecraft need to gain or lose velocity to go into the same orbit as Mars?
how many seconds are in a mars year that has approx 678 earth days ?
Chapter 1 Solutions
The Solar System
Ch. 1 - Prob. 1RQCh. 1 - What is the largest dimension of which you have...Ch. 1 - What is the difference between the Solar System,...Ch. 1 - What is the difference between the Moon and a...Ch. 1 - Prob. 5RQCh. 1 - Why are light-years more convenient than miles,...Ch. 1 - Why is it difficult to detect planets orbiting...Ch. 1 - Prob. 8RQCh. 1 - What is the difference between the Milky Way and...Ch. 1 - What are the Milky Way Galaxys spiral arms?
Ch. 1 - Prob. 11RQCh. 1 - Where are you in the Universe? If you had to give...Ch. 1 - Prob. 13RQCh. 1 - Prob. 14RQCh. 1 - Prob. 15RQCh. 1 - How do we know? How does the scientific method...Ch. 1 - The equatorial diameter of Earth is 7928 miles. If...Ch. 1 - Prob. 2PCh. 1 - One astronomical unit (AU) is about 1.5 108 km....Ch. 1 - A typical galaxy is shown on the first page of the...Ch. 1 - Prob. 5PCh. 1 - Venus orbits 0.72 AU from the Sun. What is that...Ch. 1 - Light from the Sun takes 8 minutes to reach Earth....Ch. 1 - The Sun is almost 400 times farther from Earth...Ch. 1 - If the speed of light is 3.0 × 105 km/s, how many...Ch. 1 - Prob. 10PCh. 1 - Prob. 11PCh. 1 - Prob. 12PCh. 1 - How many galaxies like our own would it take if...Ch. 1 - Arrange the following in order of increasing size:...Ch. 1 - Arrange the following in order of increasing...Ch. 1 - Prob. 3SPCh. 1 - Prob. 4SPCh. 1 - Look at the center of Figure 1–4. Approximately...Ch. 1 - Look at Figure 1-6. How can you tell that Mercury...Ch. 1 - Prob. 3LLCh. 1 - Look at Figure 1-9. Would you say that the...Ch. 1 - Prob. 5LLCh. 1 - Prob. 6LL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose, hypothetically, that the Earth orbited the Sun at half its current distance. (That is, at 1/2 AU instead of 1 AU). What would be the length of the year? What else would be different?arrow_forwardThe planet Earth has a semi-major axis of a = 1.00 AU and an orbital period of P= 1 sidereal year = 365.25 days = 3.156 x 10^7 s. Compute the orbital periods of bodies orbiting the Sun with each of the following semi-major axes. a) a = 0.1 AU b) a = 10 AU c) a = 100 AU d) a = 1000 AU e) a = 10,000 AU 1 AU = 1.496 x 10^8 km = 1.496 x 10^11 m = 1.496 x 10^13 cm. GM(sun) = 1.327 x 10^20 m^3/s^2 = (Newton's Constant) x (Mass of Sun) %3D %3Darrow_forwardWhat would be the period of revolution of a hypothetical planet whose circular orbit around the sun has a radius of 1.75 AU? (Hint: 1 AU = 1 Astronomical Unit = 1.5*1011) a) 2.3 yrs b) 1.45 yrs c) 2.9 yrsarrow_forward
- Determine what the period of revolution of the Earth would be if its distance from the Sun were 3.5 AU rather than 1 AU. Assume that the mass of the Sun remains the same. The final unit should be y in the answer.arrow_forwardAt its closest approach to Earth, Mars is 57.50 million kilometers away. How long (in minutes) would a radio signal sent from a future manned mission to Mars take to travel to Earth? (distance = speed x time) [55]arrow_forwardConsider a planet of radius 10 x 106 m for which the length of a sidereal day is 5 x 104 s. Calculate the speed you would have with respect to the center of the planet, in m/s, if you were at a latitude of 5 degrees north. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forward
- The angle on the sky between Venus and the Sun is measured to be 46.3° when Venus is at greatest eastern elongation. What is the distance of Venus from the Sun, measured in AU? Choose the answer below that most closely matches your answer. Select one: а. 1.763 AU O b. 0.587 AU Ос. 0.652 AU O d. 0.846 AU Ое. 0.723 AUarrow_forward6) Comet Halley approaches the Sun to within 0.570 AU (astronomical units – the mean earth-sun distance, 1.50E11 m), and its orbital period is 75.6 yr. How far from the Sun will Halley's comet travel before it starts its return journey? (5.27E12 m) Sun 0.570 AU 2aarrow_forwardSuppose the Sun were somehow replaced by a star with five times as much mass. How long would the Earth year last in this last case? (hint: Newton’s version of Kepler’s 3rd Law)arrow_forward
- Would you expect the distance between Earth and Mars to vary? Briefly explain your answer.arrow_forwardThe distance between Jupiter and the sun is usually measured in astronomical units.one astronomical unit is defined as:...arrow_forwardGalileos telescope showed him that Venus has a large angular diameter (61 arc seconds) when it is a crescent and a small angular diameter (10 arc seconds) when it is nearly full. Use the small-angle formula to find the ratio of its maximum to minimum distance from Earth. Is this ratio compatible with the Ptolemaic universe shown in Figure 3b of the Chapter 4 Concept Art: An Ancient Model of the Universe?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY