The number of minutes in a solar year is to be calculated. Concept introduction: Dimensional analysis is a way to convert the units of measurement. In order to convert one unit to another, one needs to know the relationship between those units. These relationships are called conversion factors. Dimensional analysis is used to set up and solve a unit conversion problem using conversion factors. Conversion factor is a fraction obtained from a relationship between the units. It is written as a ratio, and can be inverted to give two conversion factors for every relationship. 1 day = 24 hours , to convert days to hours, the conversion factor is 24 hr 1 day . 1 hr = 60 min , to convert hours to minutes, the conversion factor is 60 min 1 hr .
The number of minutes in a solar year is to be calculated. Concept introduction: Dimensional analysis is a way to convert the units of measurement. In order to convert one unit to another, one needs to know the relationship between those units. These relationships are called conversion factors. Dimensional analysis is used to set up and solve a unit conversion problem using conversion factors. Conversion factor is a fraction obtained from a relationship between the units. It is written as a ratio, and can be inverted to give two conversion factors for every relationship. 1 day = 24 hours , to convert days to hours, the conversion factor is 24 hr 1 day . 1 hr = 60 min , to convert hours to minutes, the conversion factor is 60 min 1 hr .
The number of minutes in a solar year is to be calculated.
Concept introduction:
Dimensional analysis is a way to convert the units of measurement. In order to convert one unit to another, one needs to know the relationship between those units. These relationships are called conversion factors. Dimensional analysis is used to set up and solve a unit conversion problem using conversion factors.
Conversion factor is a fraction obtained from a relationship between the units. It is written as a ratio, and can be inverted to give two conversion factors for every relationship.
1 day=24 hours, to convert days to hours, the conversion factor is 24 hr1 day.
1 hr=60 min, to convert hours to minutes, the conversion factor is 60 min1 hr.
(a
4 shows scanning electron microscope (SEM) images of extruded
actions of packing bed for two capillary columns of different diameters,
al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the
same stationary phase, spherical particles with 1-um diameter.
A) When the columns were prepared, the figure shows that the column with
the larger diameter has more packing irregularities. Explain this observation.
B) Predict what affect this should have on band broadening and discuss your
prediction using the van Deemter terms.
C) Does this figure support your explanations in application question 33?
Explain why or why not and make any changes in your answers in light of
this figure.
Figure 4 SEM images of
sections of packed columns
for a) 750 and b) 30-um-i.d.
capillary columns.³
fcrip
= ↓ bandwidth Il temp
32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual
components of the van Deemter equation and consequently, band broadening?
Increase temperature
Longer column
Using a gas mobile phase
instead of liquid
Smaller particle stationary phase
Multiple Paths
Diffusion
Mass Transfer
34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.).
A) Predict whether decreasing the column inner diameters increase or decrease bandwidth.
B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or
decreasing bandwidth as a function of i.d. and justify your answer.
Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was
obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles.
35
20
H(um)
큰 20
15
90
0+
1500
100
75
550
01
02
594
05
μ(cm/sec)
30
15
10
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.