Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 59P
Consider the flow of air through a wind turbine whose blades sweep an area of diameter D (in m). The average air velocity through the swept area is V (in m/s). On the bases of the units of the quantities involved, show that the mass flow rate of air (in kg/s) through the swept area is proportional to air density, the wind velocity, and the square of the diameter of the swept area.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The gravitational acceleration on Mars is 3.72 m/s2. The density of water is 1000 kg/m3. Starting from these assumptions, estimate the specific weight of water on Mars in lbf/ft3. Note that when converting lbm (pounds mass) to lbf (pounds force), a unit conversion called gc is required (1 lbf = 32.2 lbm ft s-2). The conversion factor ensures that (under normal gravity), a 100 lbm load generates 100 lbf of gravitational force
The mass of an airplane at sea level (g = 32.174 ft/s2) is 10 metric tons.
Find its (a) mass in lbm, slugs, and kg and (b) its weight in lbf and Newtons when the airplane is traveling at a 55,000 ft elevation. The acceleration of gravity decreases by 3.35 x 10-6 ft/s2 for each foot of elevation.
At a certain elevation, the pilot of a balloon has a mass of 125 lb and a weight of 119 lbf. What is the local acceleration of gravity, in ft/s2, at that elevation? If the balloon drifts to another elevation where g = 32.05 ft/s2, what is her weight, in lbf, and mass, in lb?
Chapter 1 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 1 - What is a fluid? How does it differ from a solid?...Ch. 1 - Define internal, external, and open-channel flows.Ch. 1 - Define incompressible flow and in compressible...Ch. 1 - Consider the flow of air over the wings of an...Ch. 1 - What is forced flow? How does it differ from...Ch. 1 - How is the Mach number of a flow defined? That...Ch. 1 - When an airplane is flying at a constant speed...Ch. 1 - Consider the flow of air at a Mach number of 0.12....Ch. 1 - What is the no-slip condition? What causes it?Ch. 1 - What is a boundary layer? What causes a boundary...
Ch. 1 - What is a steady-flow process?Ch. 1 - Define stress, normal stress, shear stress, and...Ch. 1 - What are system, surroundings, and boundary?Ch. 1 - When analyzing the acceleration of gases as they...Ch. 1 - When is a system a closed system, and when is it a...Ch. 1 - You are to understand how a reciprocating air...Ch. 1 - What is the difference between pound-mass and...Ch. 1 - In a news ankle, is stated that a recently...Ch. 1 - Explain why the light-year has the dimension of...Ch. 1 - What is the net force acting on a car cruising at...Ch. 1 - A man goes to a traditional market to buy a steak...Ch. 1 - What is the weight, in N, of an object with a mass...Ch. 1 - What is the weight of a 1-kg substance in N,...Ch. 1 - Determine the mass and the weight of the air...Ch. 1 - A 3-kW resistance heater a water beater...Ch. 1 - A195-Ibm astronaut took his bathroom scale (a...Ch. 1 - The acceleration of high-speed aircraft sometimes...Ch. 1 - A 10-kg rock is thrown upward with a force of 280...Ch. 1 - The value of the gravitational acceleration g...Ch. 1 - At 45° latitude: the gravitational acceleration as...Ch. 1 - 1-32 The gravitational constant g is 9.807m/s2 at...Ch. 1 - On average, an adult person breathes in about 7.0...Ch. 1 - While solving a problem, a person ends up with...Ch. 1 - An airplane flies horizontally at 70m/s . Its...Ch. 1 - If the airplane of Prob. 1-35 weighs 17 lbf,...Ch. 1 - The boom of a fire truck raises a fireman (and his...Ch. 1 - A 6-kg plastic tank that has a volume of 0.18m3 is...Ch. 1 - Water at 15°C from a garden hose fills a 1.5 L...Ch. 1 - A forklift raises a 90.5 kg crate 1.80 m. (a)...Ch. 1 - The gas tank of a car is filled with a nozzle that...Ch. 1 - A pool of volume V (in m3) is to filled with water...Ch. 1 - Based on unit considerations alone, show that the...Ch. 1 - What is the importance of modeling in engineering?...Ch. 1 - What is the difference between the analytical and...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - What is the difference between precision and...Ch. 1 - How do the differential equations in the study of...Ch. 1 - What is the value of the engineering software...Ch. 1 - The weight of bodies may change somewhat from one...Ch. 1 - The reactive force developed by a jet to push an...Ch. 1 - An important design consideration in two-phase...Ch. 1 - Consider the flow of air through a wind turbine...Ch. 1 - A tank is filled with oil whose density is =850...Ch. 1 - If mass, heat, and work are not allowed to cross...Ch. 1 - The speed of an aircraft is given to be 260 m/s in...Ch. 1 - One J/kg is equal to (a) 1kPam3 (b) 1kNm/kg (c)...Ch. 1 - Which is a unit for power? (a) Btu (b) kwh (c)...Ch. 1 - The speed of an aircraft is given to be 950 km/h....Ch. 1 - The weight of a 10-kg mass at sea level is (a)...Ch. 1 - The weight of a 1 -Ibm mass is (a) 1Ibmft/s2 (b)...Ch. 1 - A hydroelectric power plant operates at its rated...Ch. 1 - Write an essay on the various mass- and...Ch. 1 - Search the Internet to find out how to properly...Ch. 1 - Another unit is kgf, which is a force unit used...Ch. 1 - Discuss why pressure tests of pressurized tanks...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4arrow_forwardA compressor requires a mechanical work rate equal to 77 kW for increasing the pressure of 40 kg/min of air from 178 kPa to 685 kPa. The inlet temperature of air is 332 K and thermal dissipation towards the environment amounts to 6 kW. Take the air specific heat constant cp=1.1 kJ/(kg K). If kinetic and potential energy differences can be neglected, determine the air temperature at outlet in K to 1 decimal place.arrow_forwardWork is done on an adiabatic system due to which its velocity changes from 10 m/s to 20 m/ s. elevation increases by 20 m and temperature increases by 1 K. The mass of the system is 10 kg. Cv= 100 J/(kg K) and gravitational acceleration is 10 m/s². If there is no change in any other component of the energy of the system, the magnitude of total work done (in kJ) on the system isarrow_forward
- The drag force, Fa, imposed by the surrounding air on a vehicle moving with velocity V is given by Fa= Ca ApV²/2 where Cd is a constant called the drag coefficient, A is the projected frontal area of the vehicle, and p is the air density. An automobile is moving at V = 50 miles per hour with C = 0.28, A = 25 ft2, and p = 0.075 lb/ft³. Determine the force, in lbf, and the power, in hp, required to overcome aerodynamic drag. Step 1 Determine the force, in lb, required to overcome aerodynamic drag. F = i lbfarrow_forward2. The diameters of the suction and discharge pipes of a pump are 15 and 10 cm, respectively. The discharge pressure is read by a gage at a point 1.5 m above the centerline of the pump and the suction pressure is read by a gage 0.6 m below the centerline. If the pressure gage reads 140 kPa and the suction gage reads a vacuum of 21 cm Hg when gasoline is pumped at the rate of 35 l/sec (sg of gasoline is 0.75) a. Find the energy added by a pump. (. b. Find the power delivered to the fluid in kW. c. Find the required rating horsepower of the pump if it has an efficiency of 75% 0.10 mg Pz=140 kPa 1.5 m 0.6 m KD Pj=-0.21 m Hg 0.15 møarrow_forwardTHE PRESSURE IN THE SUBTANCE DRASTICALLY DECREASE FROM 354 TO 21 POUNDS PER SUARE INCHES (PSI), THE HEAT ENERGY OF THE OPEN SYSTEM REDUCES 555BTU/LB, AND THE VOLUME INCREASES FROM 1 TO 10FT^3/LB. (A) DETERMINE THE WORK PER LB. UNITS:BTU/LB * (B) DETERMINE THE WORK IN HP (HORSE POWER) FOR 10LB PER MIN. (1HP = 42.4BTU/MIN). UNITS:HParrow_forward
- The value of the gravitational acceleration g decreases with elevation from 9.807 m/s2 at sea level to 9.767 m/s2 at an altitude of 13,000 m, where large passenger planes cruise. Determine the percent reduction in the weight of an airplane cruising at 13,000 m relative to its weight at sea level.arrow_forwardAccording to Hooke's Law, the force required to hold the spring stretched x m beyond its natural length is given by f(x)= kx, where k is the spring constant. Suppose that 53 of work is needed to stretch a spring from its natural length of 36 cm to a length of 53 cm. Find the exact value of k, in N/m. K- N/m (*) How much work (in 3) is needed to stretch the spring from 44 cm to 48 cm? (Round your answer to two decimal places.) (b) How far beyond its natural length (in cm) will a force of 20 N keep the spring stretched? (Round your answer one decimal place.) cmarrow_forwardAn electric motor is used to drive the shaft of a small water pump. During a performance test, the torque on the motor shaft is found to be 5.886 N•m when the motor is drawing 763.54 W of electrical power. What is the rotational speed of the shaft in rpm?arrow_forward
- A gas with a density of 1.0 lb/ft3 weighs 4.0 lbf on the Moon, where the acceleration of gravity is 5.47 ft/s2.Determine its weight, in lbf, and volume, in ft3, on Mars, where g = 12.86 ft/s2.arrow_forwardAir at pressure 173.9 kPa flows through a pipe. The actual volume flow rate of air through the pipe is measured to be 6.85 m3/s. The standard volume flow rate of this air flow is 2.71 m/s. Calculate the air density in units of kg/m3. Hint: The ideal gas equation is useful for air.arrow_forwardUnits and dimensions (Activity 1) 1. A person weighs 150N on the moon, where g=1.64m/ s2. Determine (a) the mass of the person and (b) the weight of the person on earth. 2. Convert the following: (a) 40,000 N-cm to kN-m (b) 6 m/s to mm/hr (c) 1 bar (105 Pa) to kPa and (d) 500 g/mm to kg/m. 3. The mass moment of inertia of a certain body is | = 1035285.8 g-mm2. Express I in kg-m2 up to 4 significant digits.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License