Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 41P
The gas tank of a car is filled with a nozzle that discharge gasoline at a constant flow rate. Based on unit considerations of quantities, obtain a relation for the filling time in terms of the volume V of the tank (in L) and the discharge rate of gasoline (V, in L/s).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4
Air at pressure 173.9 kPa flows through a pipe. The actual volume flow rate of air through the pipe is
measured to be 6.85 m3/s. The standard volume flow rate of this air flow is 2.71 m/s. Calculate the air
density in units of kg/m3. Hint: The ideal gas equation is useful for air.
At a certain elevation, the pilot of a balloon has a mass of 125 lb and a weight of 119 lbf. What is the local acceleration of gravity, in ft/s2, at that elevation? If the balloon drifts to another elevation where g = 32.05 ft/s2, what is her weight, in lbf, and mass, in lb?
Chapter 1 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 1 - What is a fluid? How does it differ from a solid?...Ch. 1 - Define internal, external, and open-channel flows.Ch. 1 - Define incompressible flow and in compressible...Ch. 1 - Consider the flow of air over the wings of an...Ch. 1 - What is forced flow? How does it differ from...Ch. 1 - How is the Mach number of a flow defined? That...Ch. 1 - When an airplane is flying at a constant speed...Ch. 1 - Consider the flow of air at a Mach number of 0.12....Ch. 1 - What is the no-slip condition? What causes it?Ch. 1 - What is a boundary layer? What causes a boundary...
Ch. 1 - What is a steady-flow process?Ch. 1 - Define stress, normal stress, shear stress, and...Ch. 1 - What are system, surroundings, and boundary?Ch. 1 - When analyzing the acceleration of gases as they...Ch. 1 - When is a system a closed system, and when is it a...Ch. 1 - You are to understand how a reciprocating air...Ch. 1 - What is the difference between pound-mass and...Ch. 1 - In a news ankle, is stated that a recently...Ch. 1 - Explain why the light-year has the dimension of...Ch. 1 - What is the net force acting on a car cruising at...Ch. 1 - A man goes to a traditional market to buy a steak...Ch. 1 - What is the weight, in N, of an object with a mass...Ch. 1 - What is the weight of a 1-kg substance in N,...Ch. 1 - Determine the mass and the weight of the air...Ch. 1 - A 3-kW resistance heater a water beater...Ch. 1 - A195-Ibm astronaut took his bathroom scale (a...Ch. 1 - The acceleration of high-speed aircraft sometimes...Ch. 1 - A 10-kg rock is thrown upward with a force of 280...Ch. 1 - The value of the gravitational acceleration g...Ch. 1 - At 45° latitude: the gravitational acceleration as...Ch. 1 - 1-32 The gravitational constant g is 9.807m/s2 at...Ch. 1 - On average, an adult person breathes in about 7.0...Ch. 1 - While solving a problem, a person ends up with...Ch. 1 - An airplane flies horizontally at 70m/s . Its...Ch. 1 - If the airplane of Prob. 1-35 weighs 17 lbf,...Ch. 1 - The boom of a fire truck raises a fireman (and his...Ch. 1 - A 6-kg plastic tank that has a volume of 0.18m3 is...Ch. 1 - Water at 15°C from a garden hose fills a 1.5 L...Ch. 1 - A forklift raises a 90.5 kg crate 1.80 m. (a)...Ch. 1 - The gas tank of a car is filled with a nozzle that...Ch. 1 - A pool of volume V (in m3) is to filled with water...Ch. 1 - Based on unit considerations alone, show that the...Ch. 1 - What is the importance of modeling in engineering?...Ch. 1 - What is the difference between the analytical and...Ch. 1 - When modeling an engineering process, how is the...Ch. 1 - What is the difference between precision and...Ch. 1 - How do the differential equations in the study of...Ch. 1 - What is the value of the engineering software...Ch. 1 - The weight of bodies may change somewhat from one...Ch. 1 - The reactive force developed by a jet to push an...Ch. 1 - An important design consideration in two-phase...Ch. 1 - Consider the flow of air through a wind turbine...Ch. 1 - A tank is filled with oil whose density is =850...Ch. 1 - If mass, heat, and work are not allowed to cross...Ch. 1 - The speed of an aircraft is given to be 260 m/s in...Ch. 1 - One J/kg is equal to (a) 1kPam3 (b) 1kNm/kg (c)...Ch. 1 - Which is a unit for power? (a) Btu (b) kwh (c)...Ch. 1 - The speed of an aircraft is given to be 950 km/h....Ch. 1 - The weight of a 10-kg mass at sea level is (a)...Ch. 1 - The weight of a 1 -Ibm mass is (a) 1Ibmft/s2 (b)...Ch. 1 - A hydroelectric power plant operates at its rated...Ch. 1 - Write an essay on the various mass- and...Ch. 1 - Search the Internet to find out how to properly...Ch. 1 - Another unit is kgf, which is a force unit used...Ch. 1 - Discuss why pressure tests of pressurized tanks...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. The diameters of the suction and discharge pipes of a pump are 15 and 10 cm, respectively. The discharge pressure is read by a gage at a point 1.5 m above the centerline of the pump and the suction pressure is read by a gage 0.6 m below the centerline. If the pressure gage reads 140 kPa and the suction gage reads a vacuum of 21 cm Hg when gasoline is pumped at the rate of 35 l/sec (sg of gasoline is 0.75) a. Find the energy added by a pump. (. b. Find the power delivered to the fluid in kW. c. Find the required rating horsepower of the pump if it has an efficiency of 75% 0.10 mg Pz=140 kPa 1.5 m 0.6 m KD Pj=-0.21 m Hg 0.15 møarrow_forwardIn a detergent-making process, 1400 gal/h of water flows through a 2-inchpipe system as follows:Exit from pump, 2 ft vertical, open gate valve, 14 ft vertical, 908 bend,12 ft horizontal, 1/4 open globe valve, 20 ft horizontal, 908 bend, 6 ft horizontal,908 bend, 12 ft vertical, 908 bend, 14 ft horizontal, 908 bend, 4 ftvertical, 908 bend, 28 ft horizontal, open gate valve, 3 ft horizontal, entry totank containing 30 ft of liquid.a. If the pump and tank are both at grade level, estimate the head that thepump must deliver.b. If the pump inlet pressure is 25 psig, what is the outlet pressure?c. Estimate the pump shaft work.d. If the pump is powered by an electric motor with 85% efficiency, what isthe annual electricity consumption?arrow_forwardThe gravitational acceleration on Mars is 3.72 m/s2. The density of water is 1000 kg/m3. Starting from these assumptions, estimate the specific weight of water on Mars in lbf/ft3. Note that when converting lbm (pounds mass) to lbf (pounds force), a unit conversion called gc is required (1 lbf = 32.2 lbm ft s-2). The conversion factor ensures that (under normal gravity), a 100 lbm load generates 100 lbf of gravitational forcearrow_forward
- THE PRESSURE IN THE SUBTANCE DRASTICALLY DECREASE FROM 354 TO 21 POUNDS PER SUARE INCHES (PSI), THE HEAT ENERGY OF THE OPEN SYSTEM REDUCES 555BTU/LB, AND THE VOLUME INCREASES FROM 1 TO 10FT^3/LB. (A) DETERMINE THE WORK PER LB. UNITS:BTU/LB * (B) DETERMINE THE WORK IN HP (HORSE POWER) FOR 10LB PER MIN. (1HP = 42.4BTU/MIN). UNITS:HParrow_forwardVery urgent , Within 30Minutes. Answer should be in Handwritten format.arrow_forward8arrow_forward
- Two objects form a system. The mass of object 1 is 3 times more massive than the mass of object 2: m₁ = 3m₂. At a certain instant, object 1 is at location (10,-8,6) m, moving with velocity (4,6, -2) m/s. At the same instant, object 2 is at location (3,0, -2) m, moving with velocity (-8,2,7) m/s. a. What is the location of the center of mass? b. What is the velocity of the center of mass? What is the total momentum of the system? C.arrow_forwardFor a refrigerator or air conditioner, the coefficient of performance K (often denoted as COP) is the ratio of cooling output Qc to the required electrical energy input W, both in joules. The coefficient of performance is also expressed as a ratio of powers, |Qc\/t K |W\/t where |Qc|/t is the cooling power and W/t is the electrical power input to the device, both in watts. The energy efficiency ratio (EER) is the same quantity expressed in units of Btu for Qc and W h for W|. Part A Derive a general relationship that expresses EER in terms of K. Express your answer in terms of K. EER = Submit Request Answerarrow_forwardSteam at a temperature of 240 °C has a specific volume of 0.15436 m3/kg. Determine pressure, specific internal energy, enthalpy and entropy. PLS REFER TO THE ATTACHED TABLE PLS PLS USE LINEAR INTERPOLATION IF NOT JUST RETURN THE QUESTION AND SHOW THE VALUES WHERE IT CAME FROM.arrow_forward
- What makes up a control volume in a fluid flow of incompressible fluid?A. The fluid volume in a specific time, in a differential length, and differential radius from center to wall.B. The fluid volume in a specific time, in a differential length, and differential radius from center to less than the wall radius.C. The fluid volume in a specific time, in a differential length, and a defined radius.D. The fluid volume in a specific time, in a defined length, and differential radius from center to wall.arrow_forwardA cylinder of compacted scrap metal measuring 2 m in length and 0.5 m in diameter issuspended from a spring scale at a location where the acceleration of gravity is 9.78 m/s2 .If the scrap metal density, in kg/m3, varies with position z, in m, according to ρ = 7800 - 360(z/L)2,determine the reading of the scale, in N.arrow_forwardQ3. The data listed in the following table gives hourly measurements of heat flux q (cal/cm? /h) at the surface of a solar collector. As an architectural engineer, you must estimate the total heat absorbed by a 150,000-cm2 collector panel during a 14-h period. The panel has an absorption efficiency eab of 45%. The total heat absorbed is given by: h = eab q A where A = area and g = heat flux. 4 6. 10 12 14 0.10 5.32 7.80 8.00 8.03 6.27 3.54 0.20arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License