(a)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of krypton, Kr is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The

Answer to Problem 1.79E
The molar volumes of (a) krypton, Kr is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for Krypton a = 2.318 atm L2/mol2;
b = 0.03978 L/mol
Boyle temperature,
Molar volume for krypton
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p+ an2/V2] Correction term introduced for molecular attraction
[V– nb] correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for Krypton a =
Boyle temperature
=
= 711.04 K
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of krypton the molar volume is, at one bar pressure
Using the van der Waals constants given in Table 1.6, the molar volumes of krypton, Kr is calculated at 25 °C and 1 bar pressure.
(b)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of (b) ethane, C2H6 is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The ideal

Answer to Problem 1.79E
The molar volumes of ethane, C2H6 is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for ethane a = 5.489 atm L2/mol2;
b = 0.0638 L/mol
Boyle temperature Tb = a/bR = 1049.5 K
Molar volume for ethane ῡ = RT/p = 87.2 L
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p + an2/V2] Correction term introduced for molecular attraction
[V – nb] Correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for ethane a = 5.489 atm L2/mol2
b = 0.0638 L/mol
Boyle temperature Tb = a/bR
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of ethane the molar volume is, at one bar pressure
ῡ = RT/p
Using the van der Waals constants given in Table 1.6, the molar volumes of ethane, C2H6 is calculated at 25 °C and 1 bar pressure.
(c)
Interpretation:
Using the van der Waals constants given in Table 1.6, the molar volumes of mercury Hg is to be calculated at 25 °C and 1 bar pressure.
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. This works importantly well for gases at dilution and at low pressure in many experimental calculations. But the gas molecules are not performing as point masses, and there are situations where the properties of the gas molecules have measurable effect by experiments. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.

Answer to Problem 1.79E
The molar volumes of mercury is calculated at 25 °C and 1 bar pressure as follows;
Van der Waals constant for mercury a = 8.093atm L2/mol2;
b = 0.01696 L/mol
Boyle temperature Tb = a/bR = 5822 K
Molar volume for mercury ῡ = RT/p = 484 L
Explanation of Solution
The non-ideal gas equation represented as;
In the above equation,
[p + an2/V2] Correction term introduced for molecular attraction
[V – nb] Correction term introduced for volume of molecules
‘a’ and ‘b’ are called as van der Waals constants
a = the pressure correction and it is related to the magnitude and strength of the interactions between gas particles.
b = the volume correction and it is having relationship to the size of the gas particles.
Given;
Van der Waals constant for mercury a = 8.093atm L2/mol2;
b = 0.01696 L/mol
Boyle temperature Tb = a/bR
= (8.093 atm L2 mol-2)/(0.01696 L mol-1 x 0.08205 L. atm K-1 mol-1
= 5822 K
At Boyle temperature, the second virial coefficient B is zero. Thus, for one mole of mercury the molar volume is, at one bar pressure
ῡ = RT/p
Using the van der Waals constants given in Table 1.6, the molar volumes of mercury Hg is calculated at 25 °C and 1 bar pressure.
Want to see more full solutions like this?
Chapter 1 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- Don't used hand raitingarrow_forwardThe following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward
- Find a molecular formula. ( MW: 102 )arrow_forwardExperiment #8 Electrical conductivity & Electrolytes. Conductivity of solutions FLINN Scientific Scale RED LED Green LED LED Conductivity 0 OFF OFF 1 Dim OFF 2 medium OFF 3 Bright Dim Low or Nowe Low Medium High 4 Very Bright Medium nd very high AA Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ SE=Strong Electrolyte, FE = Fair Electrolyte CWE = Weak Electrolyte, NE= Noni Electrolyte, #Solutions 1 0.1 M NaCl 2/1x 102 M NaCl, 3/1X103 M Nall Can Prediction M Observed Conductivity Very bright red Bright red Dim red you help me understand how I'm supposed to find the predictions of the following solutions? I know this is an Ionic compound and that the more ions in a solution means it is able to carry a charge, right? AAAA Darrow_forward(SE EX 2) Prblsm 4-7: Can you please explain problems 4-7 and color code if needed for me. (step by step) detail explanationsarrow_forward
- (SE EX 2) Problems 8-11, can you please explain them to me in detail and color-code anything if necessary?arrow_forward(ME EX2) Problems 15-16 Could you please explain problems 15 through 16 to me in detail, step by step? Thank you so much! If necessary, please color-code them for me.arrow_forward1.)show any electrophilic aromatic substitution, identify the electriphile, nucleophile and transition statearrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,





