(a)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 1000 J at (a) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of an ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
(b)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 1000 J at (b) 500 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of an ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(c)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 1000 J at (c) 1000 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of an ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





