(a)
Sketch the power delivered to the element for
(a)
Explanation of Solution
Given data:
Refer to Figure 1.27 in the textbook for required data.
Formula used:
Write the expression for power delivered to the element as follows:
Here,
Calculation:
From the given current waveform, write the expression for current for 0 to 2 s as follows:
From the given current waveform, substitute
From the given current waveform, write the expression for current for 2 to 4 s as follows:
From the given current waveform, substitute
From the given voltage waveform, write the expression for voltage for 0 to 2 s as follows:
From the given voltage waveform, write the expression for voltage for 2 to 4 s as follows:
Modify the expression in Equation (1) for the power delivered to the element for 0 to 2 s as follows:
Substitute 5 V for
Modify the expression in Equation (1) for the power delivered to the element for 2 to 4 s as follows:
Substitute
From the calculation, write the expression for power delivered to the element as follows:
From the expression of power, draw the waveform for power delivered to the element as shown in Figure 1:
Conclusion:
Thus, the waveform for power delivered to the element is sketched.
(b)
Find the amount of energy absorbed by the element for the period of
(b)
Answer to Problem 16P
The amount of energy absorbed by the element for the period of
Explanation of Solution
Formula used:
Write the expression for energy as follows:
Here,
Calculation:
From Part (b), the expression for power delivered to the element is written as follows:
Substitute 0 s for
Rewrite the expression as follows:
Substitute
Simplify the expression as follows:
Conclusion:
Thus, the amount of energy absorbed by the element for the period of
Want to see more full solutions like this?
Chapter 1 Solutions
Fundamentals of Electric Circuits
- 7arrow_forwardUsing the idea of energy bands in solid materials, explain the characteristics of the followingmaterialsa) conductorsb) insulatorsc) semiconductorsarrow_forwardP1.15. A copper wire has a diameter of 2.05 mm and carries a current of 15 A due solely to clectrons. (These values are common in residential wiring.) Each electron has a charge of -1.60 × 10-19 C. Assume that the free-electron (these are the electrons capable of moving through the copper) concentration in copper is 1029 electrons/m'. Find the average velocity of the electrons in the wire.arrow_forward
- A sample of wire (1 mm in diameter by 1 m in diameter) length) of an aluminum alloy (containing 1.2% Mn) is placed in an electrical circuit, as shown in the figure next to. A voltage drop of 432 mV is measured at wire length when it carries a 10 A current. Calculate the conductivity of this alloy.arrow_forwardWhich of the following is not true for ferromagnetic materials? Please choose one: a. High?mthey have value. b.Above the Curie temperature, they lose their non-linear properties. C. a fixedµrthey have value. D.The energy loss is proportional to the area of the hysteresis loop.arrow_forwardA piece of silver wire has a resistance of 1 ohm. Determine the resistance of alead wire one-third the length and one-third the diameter if the resistivity of lead wire is 30 times that of silver. NOTE: Please explain where did you get the variables so I can understand them. Thank youarrow_forward
- The . capacity of the charge body to do work the . is the .24 * .electrical potential to work the greater is the electrical potential lower, lower lower, greater greater, lower greater, greater none of them Oarrow_forwardQuestions Q1) what is meant by Insolation, ARC in solar systems? Q2) mention the types of solar systems? Q3) explain with drawing the main components of solar system. Q4) explain with equations the intuitive technique for design pv/battery system. Q5) Discuss all the results in Tables (1 to 3). Q6) Referring to Tables (4) & (5); draw & discuss the relations: 1. (I VS THD of current), 2. (V Vs Q).arrow_forwardSolve for the currents shown in Figure P1.69.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,