![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_largeCoverImage.gif)
Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 28P
A 150-W incandescent outdoor lamp is connected to a 120-V source and is left burning continuously for an average of 12 hours per day. Determine:
- (a) the current through the lamp when it is lit.
- (b) the cost of operating the light for one non-leap year if electricity costs 9.5 cents per kWh.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
In the circuit shown, find the following:
1) The current Ix.
2) The average power dissipated in the capacitor.
3) The total average power dissipated in the two
resistors.
4) The average power of the independent voltage source
and specify whether it is supplied or absorbed.
5) The total impedance seen from the terminals of the
independent voltage source (Z=V/I).
20
-201
12/00V(+
21
www
202
2- If you have a unipolar winding stepper motor, draw the driver and the control circuit.
Note: The drawing is on paper.
Given the following reaction system, where Xo is the input, i.e u(t) = k₁ × Xo:
$Xo -> x1; k1*Xo
x2; k2*x1
x1
2 x2 ->%;
k3*x2^2
x2 ->;
k4*x2
Xo
1; k1 = 0.4
k2 4.5; k3 = 0.75
k4= 0.2
a) Build the model in Tellurium and run a simulation. Compute the Jacobian at steady
state using the method getFull Jacobian(). Make sure you are at steady state!
b) Write out the values for n and p
c) Write out the differential equations.
d) Write out the state space representation in terms of the rate constants etc.
e) Compute the values in the Jacobian matrix from d) by substituting the values of the rate
constants etc and any data you need from the simulation.
f) Confirm that the Jacobian you get in e) is the same as the one computed from the
simulation in a).
g) Is the system stable or not? If you find an eigenvalue of zero, that means the system is
marginally stable. You can get the eigenvalues using the tellurium method r.getFullEigenvalues()
Chapter 1 Solutions
Fundamentals of Electric Circuits
Ch. 1.3 - Calculate the amount of charge represented by...Ch. 1.3 - Prob. 2PPCh. 1.3 - The current flowing through an element is i= 4A...Ch. 1.5 - To move charge q from point b to point a requires...Ch. 1.5 - Find the power delivered to the element in Example...Ch. 1.5 - A home electric heater draws 10 A when connected...Ch. 1.6 - Figure 1.16 For Practice Prob. 1.7 Compute the...Ch. 1.7 - If an electron beam in a TV picture tube carries...Ch. 1.7 - Referring to the residential rate schedule in...Ch. 1 - One millivolt is one millionth of a volt. (a) True...
Ch. 1 - The prefix micro stands for: (a) 106 (b) 103 (c)...Ch. 1 - The voltage 2.000,000 V can be expressed in powers...Ch. 1 - A charge of 2 C flowing past a given point each...Ch. 1 - The unit of current is: (a) coulomb (b) ampere (c)...Ch. 1 - Voltage is measured in: (a) watts (b) amperes (c)...Ch. 1 - Prob. 7RQCh. 1 - The voltage across a 1.1-kW toaster that produces...Ch. 1 - Which of these is not an electrical quantity? (a)...Ch. 1 - The dependent source in Fig. 1.22 is: (a)...Ch. 1 - How much charge is represented by these number of...Ch. 1 - Determine the current flowing through an element...Ch. 1 - Find the charge q(t) flowing through a device if...Ch. 1 - A total charge of 300 C flows past a given cross...Ch. 1 - Prob. 5PCh. 1 - The charge entering a certain element is shown in...Ch. 1 - The charge flowing in a wire is plotted in Fig....Ch. 1 - Prob. 8PCh. 1 - The current through an element is shown in (a) t =...Ch. 1 - A lightning bolt with 10 kA strikes an object for...Ch. 1 - A rechargeable flashlight battery is capable of...Ch. 1 - The charge entering the positive terminal of an...Ch. 1 - The voltage v(t) across a device and the current...Ch. 1 - The current entering the positive terminal of a...Ch. 1 - Prob. 16PCh. 1 - Figure 1.28 shows a circuit with four elements, p1...Ch. 1 - Find the power absorbed by each of the elements in...Ch. 1 - Find I and the power absorbed by each element in...Ch. 1 - Find Vo and the power absorbed by each element in...Ch. 1 - A 60-W incandescent bulb operates at 120 V. How...Ch. 1 - Prob. 22PCh. 1 - A 1.8-kW electric heater takes 15 min to boil a...Ch. 1 - A utility company charges 8.2 cents/kWh. If a...Ch. 1 - A 1.2-kW toaster takes roughly 4 minutes to heat...Ch. 1 - A cell phone battery is rated at 3.85 V and can...Ch. 1 - A constant current of 3 A for 4 hours is required...Ch. 1 - A 150-W incandescent outdoor lamp is connected to...Ch. 1 - An electric stove with four burners and an oven is...Ch. 1 - Reliant Energy (the electric company in Houston,...Ch. 1 - In a household, a business is run for an average...Ch. 1 - A telephone wire has a current of 20 A flowing...Ch. 1 - A lightning bolt carried a current of 2 kA and...Ch. 1 - Figure 1.32 shows the power consumption of a...Ch. 1 - The graph in Fig. 1.33 represents the power drawn...Ch. 1 - A battery can be rated in ampere-hours (Ah) or...Ch. 1 - A total of 2 MJ are delivered to an automobile...Ch. 1 - How much energy does a 10-hp motor deliver in 30...Ch. 1 - A 600-W TV receiver is turned on for 4 h with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve by Pen and Paper not using chatgpt or AIarrow_forwardYou just got a job at Shin-Etsu Chemical growing Si crystals with different dopants. Howmuch Ga needs to be added to 800 kg of Si melt to achieve a 5-10 Ω.cm (measured at midheight) Si CZ crystal with the following characteristics: height: 7 ft, width: 12 inchesdiameter. Assume, angular rotation 10 RPM, melt viscosity 0.1 poise, pull velocity 2mm/min.a. Generate a plot of the doping distribution throughout the length of the crystal (CGa vs. fs ).b. If a second crystal were to be pulled out of the melt without replenishment of silicon nordopant what would be the average resistivity of this crystal (or resistivity at mid height)arrow_forwardDO NOT USE AI OR CHAT GPT NEED HANDWRITTEN SOLUTIONarrow_forward
- 7. Complete the following problems for the circuit below. (a) When VDD = 120V, What is the voltage drop V1 across the 7Ω resistor? (b) If the voltage source VDD is set to obtain I1 = 2A, find the value of VDD. (c) If I1 = 100A, What is the value of I2arrow_forwarda) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 =x12x2 + 9u1 dt dx2 =x1+x3+3u2 dt dx3 = 4x1 +5x2 - 12x3 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forwardCircuit Logic. Match each statement to the proper circuit. All circuits have been drawn with a light (L) to represent the load, whether it is a motor, bell, light, or any other load. In addition, each switch is illustrated as a pushbutton whether it is a maintained switch, momentary contact switch, pushbutton, switch-on target, or any other type of switch.arrow_forward
- a) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 = 4x1 = x2 dt dx2 =-3x12x2 +U1 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forwardmatch each statement to the proper circuit. All circuits have been drawn with a light (L) to represent the load, whether it is a motor, bell, light or any other load. In addition, each switch is illustrated as a push button whether it is maintained switch, momentary contact switch, pushbutton, switch-on target, or any other type of switch.arrow_forwarda) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 =-7x1 + x2 + 5u1 dt dx2 =-11x1+x3 + 2u1 dt dx3 = -8x16u1 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forward
- Question 2 (20 points) a) In terms of n and p, how many state variables and how many inputs can you see in the system below? dx1 dt =x1- 2x2 dx2 = 3x1 - 4x2 dt b) Derive the state space representation for the above system c) Determine whether the system is stable or not.arrow_forwardStuck on the question. Please do not use AI, it will get the answer wrong.arrow_forwardConsider a particle confined in an infinite potential well as shown below and its wave function Solve the following problems. is derived as √(x) = A sin (TA), and energy E= H U 0 U=0 a x πλη 2ma² €30 (iii) Calculate the value of A. [Hint: The probability of finding the particle in 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337516549/9781337516549_smallCoverImage.jpg)
EBK ELECTRICAL WIRING RESIDENTIAL
Electrical Engineering
ISBN:9781337516549
Author:Simmons
Publisher:CENGAGE LEARNING - CONSIGNMENT
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License