Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.46P
A blood warmer is to be used during the transfusion ofblood to a patient. This device is to heat blood takenfrom the blood bank at 10°C to 37°C at a how rate of200 ml/mm. The blood passes through tubing of length2 m, with a rectangular cross section
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please answer asap with correct answer
In the final stages of production, a pharmaceuticalis sterilized by heating it from 30°C to 75°C as it moves at0.2 m/s through a straight thin-walled stainless steeltube of 12.7-mm diameter. A uniform heat flux is maintained by an electric resistance heater wrappedaround the outer surface of the tube. If the tube is 10 m long, what is the required heat flux? If fluidenters the tube with a fully developed velocity profile and a uniform temperature profile, what is thesurface temperature at the tube exit? Fluid properties may be approximated as ? = 1000 kg/m3, cp =4000 J/kg K, ? = 2 x 10-3 kg/s m, k = 0.8 W/m K, and Pr = 10.
Question c d and e please
Chapter 1 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 1 - The thermal conductivity of a sheet of rigid,...Ch. 1 - The heat flux that is applied to the left face of...Ch. 1 - A concrete wall, which has a surface area of 20m2...Ch. 1 - The concrete slab of a basement is 11 in long. 8...Ch. 1 - Consider Figure 1.3. The heat flux in the...Ch. 1 - The heal flux through a wood slab 50 mm thick,...Ch. 1 - The inner and outer surface temperatures of a...Ch. 1 - A thermodynamic analysis of a proposed Brayton...Ch. 1 - A glass window of width W=1m and height H=2m is 5...Ch. 1 - A freezer compartment consists of a cubical cavity...
Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forward8.21 WP In the final stages of production, a pharmaceutical is sterilized by heating it from 25 to 75°C as it moves at o.2 m/s through a straight thin- walled stainless steel tube of 12.7-mm diameter. A uniform heat flux is maintained by an electric resistance heater wrapped around the outer surface of the tube. If the tube is 10 m long, what is the required heat flux? If fluid enters the tube with a fully developed velocity profile and a uniform temperature profile, what is the surface temperature at the tube exit and at a distance of o.5 m from the entrance? Fluid properties may be approximated as p = 1000 kg/m³, c, = 4000 J/kg · K, µ = 2 × 10-3 kg/s · m, k = 0.8 W/m · K, and Pr = 10.arrow_forwardWater going into a pipe with a tempeture of T1 and going out T2 . ambient tempeture is T0. Develop an expression for T2 ( based on heat transfer) Length of the pipe Lh0 - convective heat transfer coefficient of the airhW -convective heat transfer coefficient of the waterk- pipe thermal conductivity (W/m·K)d – pipe diameter Use any other varilable that you need and can be found online easily .arrow_forward
- To cool hot oil, an engineer has suggested that the oil be pumped through a pipe submerged in a nearby lake. The pipe (external diameter = 15 cm) will be placed in the horizontal direction. The temperature of the outer surface of the pipe averages 125 ° C. The surrounding water temperature is assumed to be constant at 15 ° C. Pipe length 100 m. If it is assumed that there is no water movement. a. Determine the convective heat transfer coefficient of the outer pipe surface to the water. = ..... Watt / (m² ° C) b. Determine the heat transfer rate from the pipe to the water. = ..... kWarrow_forwardKINDLY ANSWER FOR QUESTION NO 6. IT IS LINKED TO QUESTION 5arrow_forwardonly part 1d)arrow_forward
- Please show all steps, not Ai generated, has been wrong before. I need to understand the process.arrow_forwardMerrill et al. (1965) in a series of classic experiments studied the flow of blood in capillary tubes of various diameters. The blood had a hematocrit of 39.3 and the temperature was 20°C. They measured the pressure drop as a function of the flow rate for five tube diameters ranging from 288 to 850 μm. When they expressed the measured pressure drops in terms of the wall shear stress, and the volumetric flow rates in terms of the reduced average velocity, all of the data for the various tube sizes formed, within the experimental accuracy, a single line as predicted by the Rabinowitsch equation expressed in terms of reduced average velocity. From their results they provide the following values of the Casson parameters at 20°C: τy = 0.0289 dynes cm−2 and s = 0.229 (dynes s cm−2)1/2. Using these values for τy and s, show that the equation below for reduced average velocity provides an excellent fit to their data summarized in the following table. (Wall shear stress) τw , dynes cm-2…arrow_forwardThe condenser of a steam power plant consists of AISI 302 Stainless steel tubes, each with outer and inner diameters of 35 mm and 30 mm, respectively. Saturated steam at 0.135 bar condenses on the outer surface of the tube, while water at a mean temperature of 295 K is in fully developed flow through the tube (you can assume that 295 K is the mean temperature in the axial direction of the tube (e.g. along its length) or you may assume that the inlet water temperature is 295 K). For a water mass flow rate of 0.22 kg/s, what is the outer surface temperature of the tube and the rates of heat transfer and steam condensation per unit tube length? As an approximation you may evaluate the properties of the liquid film at the saturation temperature.arrow_forward
- VI.2 A coolant is transported in a pipe with external wall temperature of -30 °C and with outer diameter of 10 cm. The tube is thermally isolated by two layers: 1) an internal layer of foamed polypropylene with thermal conductivity of 0.08 W.m.K and thickness of 10 cm, and 2) an external felt layer with thermal conductivity of 0.05 W.m.K and thickness of 5 cm. Temperature of the outer surface is 25 °C. Calculate the heat flow from the surroundings to the tube with length of 100 m. What is the temperature on the boundary between polypropylene and felt layers? Result: The heat flow from the surroundings is approx. 1.77 kW. Temperature between layers of isolation is 8.8 °C.arrow_forwardCan someone please help me with creating an excel spreadsheet to calculate heat transfer phenomenon from a cylindrical fuel rod to the coolant? The excel sheet needs to be able to calculate these 3 things: Heat generated in a fuel rod at a distance ‘r’ from the center; Total Heat generated in the Reactor; the maximum temperature in the fuel and the cladding surface temperature, for a fuel rod at a distance ‘r’ from the center. The fuel used in this will be UO2 and there is a thin layer of helium that will separate the fuel from the cladding material. The user input parameters will be: the thermal neutron flux at the core, thermal conductivity of fuel, thermal conductivity of helium, thermal conductivity of the cladding, thickness of the helium layer, thickness of the cladding, diameter of the fuel pellet, fuel rod location (r), Cylindrical Reactor Size, and the fuel enrichment. For the fluid the user input will be coolant temperature and the heat transfer coefficient.arrow_forward5. Steam condensing on the outer surface of a thin-walled circular tube of 50 mm diameter and 6 m length maintains a uniform surface temperature of 100 C. Water flows through the tube at a rate of m= 0.25 kg/s, and its inlet and outlet temperatures are Tmi = 15 C and Tmo = 57C. What is the average convection coefficient associated with the water flow? Data: Pvater = 1000 kg/m³ ; c, = 4.2 kJ/kg-K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license