
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.71P
(a)
To determine
The case temperature when
(b)
To determine
To Plot: The maximum allowable heat dissipation for variation in
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
6.71. Determine the reactions at the supports A, C, and E of the compound beam.
3 kN/m
12 kN
A
B
CD
E
-3 m 4 m
6 m
3 m
2 m
A countershaft carrying two V-belt pullets is shown in the figure. Pulley A receives power
from a motor through a belt with the belt tensions shown. The power is transmitted through
the shaft and delivered to the belt on pulley B. Assume the belt tension on the loose side
(T1) at B is 30% of the tension on the tight side (T2).
(a) Determine the tension (i.e., T₂ and T₁) in the belt on pulley B, assuming the shaft is
running at a constant speed.
(b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as
simple supports.
(c) Draw shear-force and bending moment diagrams for the shaft (in XZ and XY plane
if needed).
(d) Calculate the maximum moments at points A and B respectively and find the point
of maximum bending moment (A or B).
(e) Find maximum stresses (tensile, compressive, and shear stresses) at the identified
point of maximum moment (hint: principal and max shear stresses)
8 dia.
9
400lbf
50lbf
45°
1.5 dia.
T₂
B
Units in inches
T₁
10 dia.
The cantilevered bar in the figure is made from a ductile material and is statically loaded
with F,, = 200 lbf and Fx = F₂ = 0. Analyze the stress situation in rod AB by obtaining
the following information. Note that the stress concentration factors are neglected in the
following questions (Kt and Kts=1).
(a) Determine the precise location of the critical stress element.
(b) Sketch the critical stress element and determine magnitudes and direction for all
stresses acting on it. (Transverse shear may only be neglected if you can justify this
decision.)
(c) For the critical stress element, determine the principal stresses and maximum shear
stress.
6 in
1-in dia.
B
+1-
in
in
2 in
5 in
Chapter 1 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 1 - The thermal conductivity of a sheet of rigid,...Ch. 1 - The heat flux that is applied to the left face of...Ch. 1 - A concrete wall, which has a surface area of 20m2...Ch. 1 - The concrete slab of a basement is 11 in long. 8...Ch. 1 - Consider Figure 1.3. The heat flux in the...Ch. 1 - The heal flux through a wood slab 50 mm thick,...Ch. 1 - The inner and outer surface temperatures of a...Ch. 1 - A thermodynamic analysis of a proposed Brayton...Ch. 1 - A glass window of width W=1m and height H=2m is 5...Ch. 1 - A freezer compartment consists of a cubical cavity...
Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - An inexpensive food and beverage container is...Ch. 1 - What is the thickness required of a masonry wall...Ch. 1 - A wall is made from an inhomogeneous...Ch. 1 - The 5-mm-thick bottom of a 200-mm-diameter panmay...Ch. 1 - A square silicon chip (k=150W/mK) is of width...Ch. 1 - For a boiling process such as shown in Figure 1.5...Ch. 1 - You’ve experienced convection cooling if you’ve...Ch. 1 - Air at 40°C flows over a long, 25-mm-diameter...Ch. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - The free convection heat transfer coefficient on a...Ch. 1 - A transmission case measures W=0.30m on a sideand...Ch. 1 - A cartridge electrical heater is shaped as a...Ch. 1 - A common procedure for measuring the velocity of...Ch. 1 - A square isothermal chip is of width w=5mm on...Ch. 1 - The temperature controller for a clothes dryer...Ch. 1 - An overhead 25-m-long, uninsulated industrial...Ch. 1 - Under conditions for which the same room...Ch. 1 - A spherical interplanetary probe of 0.5-m diameter...Ch. 1 - An instrumentation package has a spherical outer...Ch. 1 - Consider the conditions of Problem 1.22. However,...Ch. 1 - If TsTsur in Equation 1.9, the radiation heat...Ch. 1 - A vacuum system, as used ¡n sputtering...Ch. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water (pin=10bar,Tin=110C) enters...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold-...Ch. 1 - Chips of width L=15mm on a side are mounted to...Ch. 1 - Consider the transmission case of Problem 1...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - Prob. 1.48PCh. 1 - Liquid oxygen, which has a boiling into of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step ¡n semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace tor processing semiconductor materials...Ch. 1 - Prob. 1.58PCh. 1 - Consider the wind turbine of Example 1.3. To...Ch. 1 - Consider the conducting rod of Example 1.4...Ch. 1 - A long bus bar (cylindrical rod used for making...Ch. 1 - A 50mm45mm20mm cell phone chargerhas a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - A freezer compartment is covered with a...Ch. 1 - A vertical slab of Wood’s metal is joined to a...Ch. 1 - A photovoltaic panel of dimension 2m4m isinstalled...Ch. 1 - Following the hot vacuum forming of a...Ch. 1 - Prob. 1.69PCh. 1 - A computer consists of an array of five printed...Ch. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Consider the conditions of Problem 1.22,but the...Ch. 1 - Most of the energy we consume as food ¡s converted...Ch. 1 - Prob. 1.75PCh. 1 - The wall of an oven used to cure plastic parts is...Ch. 1 - An experiment to determine the convection...Ch. 1 - A thin electrical heating element provides a...Ch. 1 - A rectangular forced air healing duct is suspended...Ch. 1 - Consider the steam pipe of Example 1.2. The...Ch. 1 - During its manufacture, plate glass at 600°C is...Ch. 1 - The curing press of Example 1.9 involves exposure...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Prob. 1.84PCh. 1 - A solar flux of 700W/m2K is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A laminated thick-walled hydraulic cylinder was fabricated by shrink-fitting jacket having an outside diameter of 300mm onto a SS 304 steel tube having an inside diameter of 100mm and an outside diameter of 200mm as shown in the figure. The interference (8) was 0.15mm. When the Young's modulus for both SS304 and 1020 steel is the same as 200GPa, and the Poisson's ratio is also the same as 0.3 for both materials, find the followings. Initially 100 mm Initially 200 mm Initially 300 mm SS 304 1020 steel (a) P; (interfacial contact stress) (b) The maximum stresses (σ, and σ+) in the laminated steel cylinder resulting from the shrink fit.arrow_forwardAuto Controls Design a proportional derivitivecontroller for a plant orsystemthat satisfies the following specifications : 1. is steady-state error is less than 2 % for a ramp input. 2.) Damping ratio (zeta) is greater than 0.7have determined the 3. Once youvalue of kp and kd, then plotthe response of the compensated(with controller) and uncompensated( without the controller, only the plantsystem using MATLAB.arrow_forwardAuto Controls (a) Refer to the above figure .What kind of controller is it ? (b) simplify the block diagramto derive the closed loop transfer function of the system. (C) What are the assumptions thatare needed to make to findthe controller gain ? What arethe value of Kp , Ti and Td ?arrow_forward
- Auto Controls Design a PID controller for thefollowing system so that the modified system satisfies the followingspecifications : 1. settling time ,ts = 1.96 s and % Overshoot Mp = 70.7 % Assume a non-dominant pole at s = -15 to solve the problem The plot the compensated andThen plot the uncompensated system in MATLAB. what can you see from the plot ? what is your observation ?arrow_forwardFourth year Monthly exam\3 2024-2025 Power plant Time: 1 Hr Q1. A gas turbine power plant operates on a modified Brayton cycle consisting of two-stage compression with intercooling to the initial temperature between stages, two-stage expansion with reheating to the maximum cycle temperature, and two regenerative heat exchangers. The following data is given: Inlet air temperature: 300 K Maximum cycle temperature: 1400 K Pressure ratio across each compressor stage: 4 Pressure ratio across each turbine stage: 4 Isentropic efficiency of compressors and turbines: 85% Effectiveness of each regenerator: 80% a) Draw a schematic and T-s diagram of the cycle. b) Determine the thermal efficiency of the cycle. c) Calculate the net specific work output (in kJ/kg). d) Discuss the impact of regenerators on the cycle performance. Examiner Prof. Dr. Adil Al-Kumaitarrow_forwardAuto Controls The figure is a schematic diagram of an aircraft elevator control system. The input to the systemin the deflection angle of the control lever , and the output is the elevator angle phi.show that for each angle theta of the control lever ,there is a corresponding elevator angle phi. Then find Y(s)/theta(s) and simplify the resulting transfer function . Also note from the diagram that y and phi is relatedarrow_forward
- Liquid hexane flows through a counter flow heat exchanger at 5 m3/h as shown in Figure E5.5.The hexane enters the heat exchanger at 90°C. Water, flowing at 5 m3/h, is used to cool the hexane.The water enters the heat exchanger at 15°C. The UA product of the heat exchanger is found to be2.7 kW/K. Determine the outlet temperatures of the hot and cold fluids and the heat transfer ratebetween them using LMTD method.arrow_forwardDetermine the fluid outlet temperatures and the heat transfer rate for the counter flow heatexchanger described in Problem 3 using the ε-NTU model. Assume that the properties can beevaluated at the given fluid inlet temperatures.arrow_forwardSection View - practice Homework 0.5000 3.0000 2,0000 1.0000arrow_forward
- Drawing the section view for the following multiview drawing AutoCAD you see the section pratice I need to show how to autocadarrow_forwardA boiler with 80% efficiency produces steam at 40bar and 500 C at a rate of 1.128kg/s. The temperature of the feed water is raised from 25 C to 125 C in the economizer and the ambient air is drawn to the boiler at a rate of 2.70 kg/s at 16 C. The flue gases leave the chimney at rate of 3 kg/s at 150 C with specific heat of 1.01 kJ/kg.K. The dryness fraction of steam collected in the steam drum is 0.95. 1- Determine the heat value of the fuel. 2- The equivalence evaporation. 3- Draw the heat balance sheet.arrow_forwardA rotating shaft is made of 42 mm by 4 mm thick cold-drawn round steel tubing and has a 6 mm diameter hole drilled transversely through it. The shaft is subjected to a pulsating torque fluctuating from 20 to 160 Nm and a completely reversed bending moment of 200 Nm. The steel tubing has a minimum strength of Sut = 410 MPa (60 ksi). The static stress-concentration factor for the hole is 2.4 for bending and 1.9 for torsion. The maximum operating temperature is 400˚C and a reliability of 99.9% is to be assumed. Find the factor of safety for infinite life using the modified Goodman failure criterion.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license