Consider an infinitely thin flat plate of chord c at an angle of attack
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Fundamentals of Aerodynamics
Additional Engineering Textbook Solutions
Fundamentals of Heat and Mass Transfer
Fluid Mechanics: Fundamentals and Applications
Statics and Mechanics of Materials (5th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Vector Mechanics For Engineers
Foundations of Materials Science and Engineering
- The shock waves on a vehicle in supersonic flight cause a component ofdrag called supersonic wave drag Dw. Define the wave-drag coefficient asCD,w = Dw/q∞S, where S is a suitable reference area for the body. Insupersonic flight, the flow is governed in part by its thermodynamicproperties, given by the specific heats at constant pressure cp and atconstant volume cv. Define the ratio cp/cv ≡ γ . Using Buckingham’spi theorem, show that CD,w = f (M∞, γ ). Neglect the influence of friction.arrow_forwardOne type of supersonic wind tunnel is a blow-down tunnel, where air is stored in a high-pressure reservoir, and then, upon the opening of a valve, exhausted through the tunnel into a vacuum tank or simply into the open atmosphere at the downstream end of the tunnel. For this example, weconsider just the high-pressure reservoir as a storage tank that is being charged with air by a high-pressure pump. As air is being pumped into the constant-volume reservoir, the air pressure inside the reservoir increases. The pump continues to charge the reservoir until the desired pressure is achieved.Consider a reservoir with an internal volume of 30 m3. As air is pumped into the reservoir, the air pressure inside the reservoir continually increases with time. Consider the instant during the charging process when the reservoir pressure is 10 atm. Assume the air temperature inside the reservoir is held constant at 300 K by means of a heat exchanger.Air is pumped into the reservoir at the rate of 1…arrow_forwardConsider a circular cylinder in a hypersonic flow, with its axisperpendicular to the flow. Let φ be the angle measured between radiidrawn to the leading edge (the stagnation point) and to any arbitrary pointon the cylinder. The pressure coefficient distribution along the cylindricalsurface is given by Cp = 2 cos2 φ for 0 ≤ φ ≤ π/2 and 3π/2 ≤ φ ≤ 2πand Cp = 0 for π/2 ≤ φ ≤ 3π/2. Calculate the drag coefficient for thecylinder, based on projected frontal area of the cylinder.arrow_forward
- Consider the supersonic flow over a flat plate at an angle of attack, assketched . As stated , the flow direction downstream of the trailing edge of the plate, behind the trailing edge shock and expansion waves, is not precisely in the freestream direction.Why? Outline a method to calculate the strengths of the trailing edgeshock and expansion waves, and the direction of the flow downstream ofthe trailing edge.arrow_forwardConsider the isentropic flow through a supersonic wind-tunnel nozzle. The reservoir properties are T0= 500 K and p0 = 10 atm. If p (corresponds to your assigned altitude) at the nozzle exit, calculate the exit temperature and density.ASSIGNED ALTITUDE = 9522 ftarrow_forward1 atm = 2116 lb/ft2 = 1.01 × 105 N/m2. Consider the isentropic flow over an airfoil. The freestream conditions areT∞ = 245 K and p∞ = 4.35 × 104 N/m2. At a point on the airfoil, thepressure is 3.6 × 104 N/m2. Calculate the density at this point.arrow_forward
- Consider a low-speed open-circuit subsonic wind tunnel. The tunnel is turned on, and the pressure difference between the inlet (the settling chamber) and the test section is read as a height difference of 10 cm on a U-tube mercury manometer. (The density of liquid mercury is 1.36 × 104 kg/m3.) Assume that a Pitot tube is inserted into the test-section flow of the wind tunnel. The tunnel test section is completely sealed from the outside ambient pressure. Calculate the total pressure measured by the Pitot tube, assuming the static pressure at the tunnel inlet is atmospheric. Given that A2/A1 = 1/12. (Round the final answer to two decimal places.) The total pressure measured by the Pitot tube is × 105 N/m2.arrow_forwardHelp me solve this problem of dynamic gases Choose the correctarrow_forwardConsider a flat plate with a chord length (from leading to trailing edge) of 1 m. The free-stream flow properties are M1 = 3, p1 = 1 atm, and T, = 270 K. Using shock-expansion theory, tabulate and plot on graph paper these properties as functions of angle of attack from 0 to 30° (use increments of 5°): a. Pressure on the top surface b. Pressure on the bottom surface c. Temperature on the top surface d. Temperature on the bottom surface e. Lift per unit span f. Drag per unit span g. Lift/drag ratio (Note: The results from this problem will be used for comparison with linear supersonic theory in Chap. 9.)arrow_forward
- Consider a low-speed subsonic wind tunnel designed with a reservoir cross-sectional area of 2 m2 and a test-section cross-sectional area of 0.5 m2. The pressure in the test section is 1 atm.arrow_forwardPlease asaparrow_forwardConsider a wing mounted in the test-section of a subsonic wind tunnel. The velocity of the airflow is 160 ft/s. If the velocity at a point on the wing is 195 ft/s, what is the pressure coefficient at this point?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning