Fundamentals of Aerodynamics
Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.16P

Consider a flat plate at zero angle of attack in a hypersonic flow at Mach10 at standard sea level conditions. At a point 0.5 m downstream from the leading edge, the local shear stress at the wall is 282 N/m 2 . The gas temperature at the wall is equal to standard sea level temperature. At this point, calculate the velocity gradient at the wall normal to the wall.

Blurred answer
Students have asked these similar questions
Consider a cone at zero angle of attack in a hypersonic flow. (Hypersonic flow is very high-speed flow, generally defined as any flow above a Mach number of 5.) The half-angle of the cone is θc, as shown inthe figure. An approximate expression for the pressure coefficient on the surface of ahypersonic body is given by the newtonian sine-squared law :                                          Cp = 2 sin2 θcNote that Cp, hence, p, is constant along the inclined surface of the cone. Along the base of the body, we assume that p = p∞. Neglecting the effect of friction, obtain an expression for the drag coefficient of the cone, where CD is based on the area of the base Sb.
The shock waves on a vehicle in supersonic flight cause a component ofdrag called supersonic wave drag Dw. Define the wave-drag coefficient asCD,w = Dw/q∞S, where S is a suitable reference area for the body. Insupersonic flight, the flow is governed in part by its thermodynamicproperties, given by the specific heats at constant pressure cp and atconstant volume cv. Define the ratio cp/cv ≡ γ . Using Buckingham’spi theorem, show that CD,w = f (M∞, γ ). Neglect the influence of friction.
Consider a Lear jet flying at a velocity of 250 m/s at an altitude of 10 km,where the density and temperature are 0.414 kg/m3 and 223 K,respectively. Consider also a one-fifth scale model of the Lear jet beingtested in a wind tunnel in the laboratory. The pressure in the test section ofthe wind tunnel is 1 atm = 1.01 × 105 N/m2. Calculate the necessaryvelocity, temperature, and density of the airflow in the wind-tunnel testsection such that the lift and drag coefficients are the same for thewind-tunnel model and the actual airplane in flight.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License