Concept explainers
(a)
Interpretation:
The physical state of air in the room is to be determined.
Concept introduction:
Anything that has mass and volume is defined as a matter. The matter is classified as solids, liquids, and gases on the basis of a state that depends on the physical form of matter.
In solids, the atoms and molecules have fixed positions and are closely packed to each other. The atoms and molecules in the solid state only vibrate and do not move over each other. Therefore, a solid has a rigid shape and fixed volume. The examples of matter that are solid are ice and diamond.
In liquids, atoms and molecules are also closely packed to each other but they can move over each other. Thus, liquids have fixed volume but they do not have a fixed shape. Liquids occupy the shape of the container. The examples of matter that are liquid are water and alcohol.
In gases, the atoms and molecules have space between them and can easily move over each other hence gases are compressible. Gases neither have fixed shape nor volume. It occupies the shape and volume of the container. The examples of matter that are gases are nitrogen and carbon dioxide.
(b)
Interpretation:
The physical state of tablets in a bottle of vitamins is to be determined.
Concept introduction:
Anything that has mass and volume is defined as a matter. The matter is classified as solids, liquids, and gases on the basis of a state that depends on the physical form of matter.
In solids, the atoms and molecules have fixed positions and are closely packed to each other. The atoms and molecules in the solid state only vibrate and do not move over each other. Therefore, a solid has a rigid shape and fixed volume. The examples of matter that are solid are ice and diamond.
In liquids, atoms and molecules are also closely packed to each other but they can move over each other. Thus, liquids have fixed volume but they do not have a fixed shape. Liquids occupy the shape of the container. The examples of matter that are liquid are water and alcohol.
In gases, the atoms and molecules have space between them and can easily move over each other hence gases are compressible. Gases neither have fixed shape nor volume. It occupies the shape and volume of the container. The examples of matter that are gases are nitrogen and carbon dioxide.
(c)
Interpretation:
The physical state of sugar in a packet is to be determined.
Concept introduction:
Anything that has mass and volume is defined as a matter. The matter is classified as solids, liquids, and gases on the basis of a state that depends on the physical form of matter.
In solids, the atoms and molecules have fixed positions and are closely packed to each other. The atoms and molecules in the solid state only vibrate and do not move over each other. Therefore, a solid has a rigid shape and fixed volume. The examples of matter that are solid are ice and diamond.
In liquids, atoms and molecules are also closely packed to each other but they can move over each other. Thus, liquids have fixed volume but they do not have a fixed shape. Liquids occupy the shape of the container. The examples of matter that are liquid are water and alcohol.
In gases, the atoms and molecules have space between them and can easily move over each other hence gases are compressible. Gases neither have fixed shape nor volume. It occupies the shape and volume of the container. The examples of matter that are gases are nitrogen and carbon dioxide.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Chemistry The Molecular Nature Of Matter And Change 9th
- Using line angle formulas, draw thestructures of and name four alkanes that have total of 7carbons, one of which is tertiary.Please explain this in detail and can you also explain how to approach a similar problem like this as well?arrow_forwardUsing dashed line wedge projections drawthe indicated compounds and indicate whether thecompound you have drawn is R or S.(a) The two enantiomers of 2-chlorobutane. Can you please explain your steps and how you would approach a similar problem. Thank you!arrow_forward5) There are no lone pairs shown in the structure below. Please add in all lone pairs and then give the hybridization scheme for the compound. (8) 10,11 7) 1.2.3 H 4 | 14 8) COC 12 13 H 16 15 H7 9) - 5.6 C 8 H 10) H 1). 2) 3)_ 11) 12) 13) 4)_ 14) 5) 15) 16) 6)arrow_forward
- The sum of the numbers in the name of isA. 11; B. 13; C. 10; D. 12; E. none of the other answers iscorrect. I believe the awnser should be E to this problem but the solution to this problem is D 12. I'm honestly unsure how that's the solution. If you can please explain the steps to this type of problem and how to approach a problem like this it would be greatly appreciated!arrow_forwardConsider the following data for phosphorus: g atomic mass 30.974 mol electronegativity 2.19 kJ electron affinity 72. mol kJ ionization energy 1011.8 mol kJ heat of fusion 0.64 mol You may find additional useful data in the ALEKS Data tab. Does the following reaction absorb or release energy? 2+ + (1) P (g) + e → P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (1) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (1): Does the following reaction absorb or release energy? 00 release absorb Can't be decided with the data given. yes no ☐ kJ/mol (²) P* (8) + + + e →>> P (g) Is it possible to calculate the amount of energy absorbed or released by reaction (2) using only the data above? If you answered yes to the previous question, enter the amount of energy absorbed or released by reaction (2): ☐ release absorb Can't be decided with the data given. yes no kJ/mol аarrow_forwardThe number of hydrogens in an alkyne that has a main chain of 14carbons to which are attached a cyclobutyl ring, a benzene ring, an–OH group, and a Br is A. 34; B. 35; C. 36; D. 24; E. 43arrow_forward
- Hello! I have a 500 Hz H-NMR for 1,5-bis-(4-methoxyphenyl)-penta-1,4-dien-3-one. I need to label the signals with the corresponding H's. Then, find out if the two alkenes are cis or trans by calculating the J values. I believe that I have the H-NMR labeled correctly, but not sure if I got the J values correct to determine if the two alkenes in the compound will make the compound cis or trans.arrow_forwardWhat is the only possible H-Sb-H bond angle in SbH3?arrow_forwardpls helparrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





