You're a contestant on a TV game show. In the final round of the game, if contestants answer a question correctly, they will increase their current winnings of $1 million to $3 million. If they are wrong, their prize is decreased to $750,000. You believe you have a 25% chance of answering the question correctly. Ignoring your current winnings, your expected payoff from playing the final round of the game show is [$ blank]. Given that this is positive [blank (positive/negative)], you should [blank (should/should not)] play the final round of the game. (Hint: Enter a negative sign if the expected payoff is negative.) The lowest probability of a correct guess that would make the guessing in the final round profitable (in expected value) is [blank]. (Hint: At what probability does playing the final round yield an expected value of zero?)
You're a contestant on a TV game show. In the final round of the game, if contestants answer a question correctly, they will increase their current winnings of $1 million to $3 million. If they are wrong, their prize is decreased to $750,000. You believe you have a 25% chance of answering the question correctly. Ignoring your current winnings, your expected payoff from playing the final round of the game show is [$ blank]. Given that this is positive [blank (positive/negative)], you should [blank (should/should not)] play the final round of the game. (Hint: Enter a negative sign if the expected payoff is negative.) The lowest probability of a correct guess that would make the guessing in the final round profitable (in expected value) is [blank]. (Hint: At what probability does playing the final round yield an expected value of zero?)
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
Related questions
Question
100%
You're a contestant on a TV game show. In the final round of the game, if contestants answer a question correctly, they will increase their current winnings of $1 million to $3 million. If they are wrong, their prize is decreased to $750,000. You believe you have a 25% chance of answering the question correctly.
Ignoring your current winnings, your expected payoff from playing the final round of the game show is [$ blank]. Given that this is positive [blank (positive/negative)], you should [blank (should/should not)] play the final round of the game. (Hint: Enter a negative sign if the expected payoff is negative.)
The lowest probability of a correct guess that would make the guessing in the final round profitable (in expected value) is [blank]. (Hint: At what probability does playing the final round yield an expected value of zero?)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.Recommended textbooks for you
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education