We have a group of three friends: Kramer, Jerry and Elaine. Kramer has a $10 banknote that he will auction off, and Jerry and Elaine will be bidding for it. Jerry and Elaine have to submit their bids to Kramer privately, both at the same time. We assume that both Jerry and Elaine only have $2 that day, and the available strategies to each one of them are to bid either $0, $1 or $2. Whoever places the highest bid, wins the $10 banknote. In case of a tie (that is, if Jerry and Elaine submit the same bid), each one of them gets $5. Regardless of who wins the auction, each bidder has to pay to Kramer whatever he or she bid. Does this game have a Nash Equilibrium? (If not, why not? If yes, what is the Nash Equilibrium?)
We have a group of three friends: Kramer, Jerry and Elaine. Kramer has a $10 banknote that he will auction off, and Jerry and Elaine will be bidding for it. Jerry and Elaine have to submit their bids to Kramer privately, both at the same time. We assume that both Jerry and Elaine only have $2 that day, and the available strategies to each one of them are to bid either
$0, $1 or $2. Whoever places the highest bid, wins the $10 banknote. In case of a tie (that is, if Jerry and Elaine submit the same bid), each one of them gets $5. Regardless of who wins the auction, each bidder has to pay to Kramer whatever he or she bid.
Does this game have a Nash Equilibrium? (If not, why not? If yes, what is the Nash Equilibrium?)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps