Which of the following functions V(y1, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) 3₁ = -2y₁y2e(132)² - 6y₁, y2 = -2y²y₂e(³12)² – 2y2 - Select one: O a. V(y₁, y2) = y2e (132)² + y² − 3y₁ y²e - Ob. V(y₁, y2) = e(312)² + y² −1+3y² V(y1, 92) = y₁ + (32-1)² O c. Od. V(y₁, y2) = e(31 32)²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical
system with equilibrium point at (0,0)
y₁ = -2y₁yze(312)² - 6y₁, y2 = -2y²y2e (³1 32)² — 242
-
Select one:
a. V(y₁, y2) = y²e(³132)² + y² − 3y₁
-
O b.
O c.
O d. V(y₁, y2) = e(3132)²
V(y₁, y2) = e(3132)² + y² −1+3y²
==
V(y1, y2) = y₁ + (y₂ − 1)²
Transcribed Image Text:Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0,0) y₁ = -2y₁yze(312)² - 6y₁, y2 = -2y²y2e (³1 32)² — 242 - Select one: a. V(y₁, y2) = y²e(³132)² + y² − 3y₁ - O b. O c. O d. V(y₁, y2) = e(3132)² V(y₁, y2) = e(3132)² + y² −1+3y² == V(y1, y2) = y₁ + (y₂ − 1)²
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,