Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2₁²¹₁¹²2²³ - 6₁₁ y₂ = -2²₁₂₁₁₂2)² – 2y2 Select one: a. ○ b. O c. V(y₁, y₂) = e(1132)² V(y₁, y2) = e(¹1³2)² + y² − 1 +3y² V(y₁, Y2) = y²e(₁92)² + y²/2 − 3y₁ ○ d. _V(y₁, Y2) = y† + (y₂ − 1)²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium
point at (0, 0)
y₁ = −2y₁y¾e(Y192)² – 6y₁, y₂ = -2y²y₂e(³₁V2)² – 2y₂
Select one:
a.
○ b.
V(y₁, y2) = e(Y1Y2)²
V(y₁, y2) = e(¹¹³₂)² + y² −1+3y²
○ c. V(y₁, ₂) = y²e(₁8₂)² + y² − 3y₁
O
○ d. V(y₁, y₂) = y† + (y₂ − 1)²
Transcribed Image Text:Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2y₁y¾e(Y192)² – 6y₁, y₂ = -2y²y₂e(³₁V2)² – 2y₂ Select one: a. ○ b. V(y₁, y2) = e(Y1Y2)² V(y₁, y2) = e(¹¹³₂)² + y² −1+3y² ○ c. V(y₁, ₂) = y²e(₁8₂)² + y² − 3y₁ O ○ d. V(y₁, y₂) = y† + (y₂ − 1)²
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,