Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2y₁y¾e(v₁92)² – 6y₁, y₂ = −2y²y₂e(₁₂)² – 2y2 Select one: a. ● b. ○ c. ○ d. V(y1, y2) = e(1182)² V(y₁, Y2) = e(³1¹ ³2)² + y² − 1 + 3y² V(y₁, y₂) = y²₁e(₁9₂)² + y² − 3y₁ V(y₁, y₂) = y² + (y₂ − 1)²
Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2y₁y¾e(v₁92)² – 6y₁, y₂ = −2y²y₂e(₁₂)² – 2y2 Select one: a. ● b. ○ c. ○ d. V(y1, y2) = e(1182)² V(y₁, Y2) = e(³1¹ ³2)² + y² − 1 + 3y² V(y₁, y₂) = y²₁e(₁9₂)² + y² − 3y₁ V(y₁, y₂) = y² + (y₂ − 1)²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%

Transcribed Image Text:Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium
point at (0, 0)
y₁ = −2y₁y/²e(1₁³2)² — 6₁, y2 = −2y²y₂e(11³₂)² – 2y₂
Select one:
○ a.
● b.
○c.
○ d.
V(y₁, y₂) = e(1132)²
V(y₁, Y2) = e(11³2)² + y² − 1 + 3y²
V(y₁, y₂) = y²e(₁92)² + y² − 3y₁
V(y₁, y2) = y + (y2 − 1)²
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

