Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2y₁ y²e(³1³2)² – 6y₁, Select one: a. V(y₁, y2) = e(1132)² b. Oc. y2 = −2y²y₂e (1₁9₂)² – 2y2 V(y₁, Y2) = e(³₁³2)² + y² −1+3y² V(₁,₂)= y²e₁₂³² + y² − 3y₁ O d. V(y₁, y2) = y + (y₂ − 1)²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with
equilibrium point at (0, 0)
y₁ = −2y₁y²e(1³2)² – 6y₁, y₂ = −2y²y₂e(1³2)² – 2y2
V2
Select one:
O a. V(y₁, y₂) = e(1₁³2)²
○ b.
c.
O d.
V(y₁, Y2) = e(1¹³2)² + y² −1+3y²
V(y₁, y2) = y²e (₁³2)² + y² − 3y₁
-
V(y₁, y₂) = y₁ + (y₂ − 1)²
Transcribed Image Text:Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2y₁y²e(1³2)² – 6y₁, y₂ = −2y²y₂e(1³2)² – 2y2 V2 Select one: O a. V(y₁, y₂) = e(1₁³2)² ○ b. c. O d. V(y₁, Y2) = e(1¹³2)² + y² −1+3y² V(y₁, y2) = y²e (₁³2)² + y² − 3y₁ - V(y₁, y₂) = y₁ + (y₂ − 1)²
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,