2. A particle of mass m moves in a straight line under the action of a conservative force F(x) with potential energy U(x) = x²e¯x. (i) Calculate F(x) and find the two equilibrium points of the system. Compute if the equi- libria are stable or unstable. Sketch the potential energy as a function of x, indicating the equilibria on your plot. (ii) Calculate the total mechanical energy E of the system, in terms of v and x. Show that dE/dt = 0, i.e., the total energy is constant during motion. (hint: use the equation of motion mi = (iii) Assume the particle starts in xo energy Eo of the particle. Using (ii), with = F) O with positive initial velocity vo > 0. Find the initial show that the particle reaches x = 2 only if vo > û, 8e-2 = " m and in this case the particle's velocity in x = 2 is 8e-2 v(2): = v m (iv) Assume the particle starts in x0 = 0 with positive initial velocity vo > û. Use (ii) to find the expression for v(x) and find the terminal velocity of the particle as x → ∞. If the particle starts with negative initial velocity vo < 0, can it escape to x → ∞o? (v) Assume m = 1, show that the equation of motion is d²x d+2 = - = x(x − 2)e¯x.
2. A particle of mass m moves in a straight line under the action of a conservative force F(x) with potential energy U(x) = x²e¯x. (i) Calculate F(x) and find the two equilibrium points of the system. Compute if the equi- libria are stable or unstable. Sketch the potential energy as a function of x, indicating the equilibria on your plot. (ii) Calculate the total mechanical energy E of the system, in terms of v and x. Show that dE/dt = 0, i.e., the total energy is constant during motion. (hint: use the equation of motion mi = (iii) Assume the particle starts in xo energy Eo of the particle. Using (ii), with = F) O with positive initial velocity vo > 0. Find the initial show that the particle reaches x = 2 only if vo > û, 8e-2 = " m and in this case the particle's velocity in x = 2 is 8e-2 v(2): = v m (iv) Assume the particle starts in x0 = 0 with positive initial velocity vo > û. Use (ii) to find the expression for v(x) and find the terminal velocity of the particle as x → ∞. If the particle starts with negative initial velocity vo < 0, can it escape to x → ∞o? (v) Assume m = 1, show that the equation of motion is d²x d+2 = - = x(x − 2)e¯x.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,