2. A particle of mass m moves in a straight line under the action of a conservative force F(x) with potential energy U(x) = x²e-x (i) Calculate F(x) and find the two equilibrium points of the system. Compute if the equi- libria are stable or unstable. Sketch the potential energy as a function of x, indicating the equilibria on your plot. (ii) Calculate the total mechanical energy E of the system, in terms of v and x. Show that dE/dt =0, i.e., the total energy is constant during motion. (hint: use the equation of motion mi = F) (iii) Assume the particle starts in x = 0 with positive initial velocity vo >0. Find the initial energy Eo of the particle. Using (ii), show that the particle reaches x = 2 only if vo> û, with 8e-2 v = m and in this case the particle's velocity in x = 2 is 8e-2 v(2) = ਪੰਨੇ m (iv) Assume the particle starts in x0 = 0 with positive initial velocity vo > û. Use (ii) to find the expression for v(x) and find the terminal velocity of the particle as x → ∞. If the particle starts with negative initial velocity vo <0, can it escape to x → ∞? (v) Assume m=1, show that the equation of motion is = x(x-2)e. Using a computing software (e.g. Python), solve this equation and plot the solutions (x as a function of time t) for t = [0, 10] and for the six initial conditions (a) x = 0, vo= 0 (b) x = 2, vo = 0 (c) x = 0, vo = 0.5 (d) x = 0, vo = -0.5 (e) x=0, vo= 2 3 (f) x = 0, vo= -10. Discuss the behaviour of the solutions in light of the previous points.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. A particle of mass m moves in a straight line under the action of a conservative force F(x)
with potential energy
U(x)
= x²e-x
(i) Calculate F(x) and find the two equilibrium points of the system. Compute if the equi-
libria are stable or unstable. Sketch the potential energy as a function of x, indicating the
equilibria on your plot.
(ii) Calculate the total mechanical energy E of the system, in terms of v and x. Show that
dE/dt =0, i.e., the total energy is constant during motion.
(hint: use the equation of motion mi = F)
(iii) Assume the particle starts in x = 0 with positive initial velocity vo >0. Find the initial
energy Eo of the particle. Using (ii), show that the particle reaches x = 2 only if vo> û,
with
8e-2
v =
m
and in this case the particle's velocity in x = 2 is
8e-2
v(2) =
ਪੰਨੇ
m
(iv) Assume the particle starts in x0 = 0 with positive initial velocity vo > û. Use (ii) to
find the expression for v(x) and find the terminal velocity of the particle as x → ∞. If the
particle starts with negative initial velocity vo <0, can it escape to x → ∞?
(v) Assume m=1, show that the equation of motion is = x(x-2)e.
Using a computing software (e.g. Python), solve this equation and plot the solutions (x as a
function of time t) for t = [0, 10] and for the six initial conditions
(a) x = 0, vo= 0
(b) x = 2, vo = 0
(c) x = 0, vo = 0.5
(d) x = 0, vo = -0.5
(e) x=0, vo= 2
3
(f) x = 0, vo= -10.
Discuss the behaviour of the solutions in light of the previous points.
Transcribed Image Text:2. A particle of mass m moves in a straight line under the action of a conservative force F(x) with potential energy U(x) = x²e-x (i) Calculate F(x) and find the two equilibrium points of the system. Compute if the equi- libria are stable or unstable. Sketch the potential energy as a function of x, indicating the equilibria on your plot. (ii) Calculate the total mechanical energy E of the system, in terms of v and x. Show that dE/dt =0, i.e., the total energy is constant during motion. (hint: use the equation of motion mi = F) (iii) Assume the particle starts in x = 0 with positive initial velocity vo >0. Find the initial energy Eo of the particle. Using (ii), show that the particle reaches x = 2 only if vo> û, with 8e-2 v = m and in this case the particle's velocity in x = 2 is 8e-2 v(2) = ਪੰਨੇ m (iv) Assume the particle starts in x0 = 0 with positive initial velocity vo > û. Use (ii) to find the expression for v(x) and find the terminal velocity of the particle as x → ∞. If the particle starts with negative initial velocity vo <0, can it escape to x → ∞? (v) Assume m=1, show that the equation of motion is = x(x-2)e. Using a computing software (e.g. Python), solve this equation and plot the solutions (x as a function of time t) for t = [0, 10] and for the six initial conditions (a) x = 0, vo= 0 (b) x = 2, vo = 0 (c) x = 0, vo = 0.5 (d) x = 0, vo = -0.5 (e) x=0, vo= 2 3 (f) x = 0, vo= -10. Discuss the behaviour of the solutions in light of the previous points.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,