de Consider a model: = 1- cos 0 – ÷(1 + cos 0) dt (a) Determine the equilibrium points for this model. (b) Classify these equilibria.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
de
2. Consider a model:
dt
= 1 - os
cos -
÷(1 + cos 0)
(a) Determine the equilibrium points for this model.
(b) Classify these equilibria.
Transcribed Image Text:de 2. Consider a model: dt = 1 - os cos - ÷(1 + cos 0) (a) Determine the equilibrium points for this model. (b) Classify these equilibria.
Expert Solution
Part (a)

We are given,

dθdt=1-cosθ -13(1+cos θ)

Condition of Equilibrium:

dθdt=0

1-cos θ-13(1+cos θ)=01-cos θ=13(1+cos θ)3-3 cos θ=1+cos θ2=4 cos  θcos  θ=12 θ=π3

Hence the Equilibrium point is at  θ=π3 .

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,