Which of the following functions V(y₁, y₂) is a Lyapunov function for the dynamical system with equilibrium point at (0,0) y₁ = −2y₁y²e₁9₂)² – 6y₁, №₂ = −2y²y₂e0³₁³₂²)² – 2Y2 - Select one: O a. V(₁,₂)= y²e0₁₂)² + y² - 3₁ O b. V(y₁,Y2) = e(₁3₂)² c. V (₁,₂)= y₁ + (y₂ − 1)² - Od. V(₁,₂)= ₂² +² -1 +3²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical
system with equilibrium point at (0,0)
y₁ = −2y₁y²e(¹92)² – 6y₁, №₂ = −2y²y₂e₁³₂)³² – 2y2
Select one:
○a. V(Y₁,Y₂) = y²e@₁9₂)² + y² − 3y₁
○ b. V(y₁,Y₂) = e(₁3₂)²
c. V(y₁,₂)= y₁ + (y₂ − 1)²
-
○ d. V(Y₁,Y₂) = e(V1Y₂)² + y² − 1 + 3y²
-
Transcribed Image Text:Which of the following functions V(y₁, y2) is a Lyapunov function for the dynamical system with equilibrium point at (0,0) y₁ = −2y₁y²e(¹92)² – 6y₁, №₂ = −2y²y₂e₁³₂)³² – 2y2 Select one: ○a. V(Y₁,Y₂) = y²e@₁9₂)² + y² − 3y₁ ○ b. V(y₁,Y₂) = e(₁3₂)² c. V(y₁,₂)= y₁ + (y₂ − 1)² - ○ d. V(Y₁,Y₂) = e(V1Y₂)² + y² − 1 + 3y² -
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,