Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![### Determining the Standard Gibbs Free Energy Change (ΔG⁰ₓₙ)
#### Problem Statement:
Calculate the value of ΔG⁰ₓₙ for the reaction:
\[
2C \rightarrow 3A + 4B
\]
#### Given Information:
For the reaction:
\[
C \rightarrow \frac{3}{2} A + 2B
\]
the standard Gibbs free energy change (ΔG⁰ₓₙ) is given as:
\[
ΔG⁰ₓₙ = 240.5 \text{ kJ/mol}
\]
#### Explanation:
To determine the ΔG⁰ₓₙ for the target reaction, consider the given reaction and how it relates to the target reaction.
1. The given reaction:
\[
C \rightarrow \frac{3}{2} A + 2B
\]
has a ΔG⁰ₓₙ value of 240.5 kJ/mol.
2. For the target reaction:
\[
2C \rightarrow 3A + 4B
\]
Notice that the target reaction is exactly twice the given reaction:
\[
2 \times \left( C \rightarrow \frac{3}{2} A + 2B \right)
\]
which simplifies to:
\[
2C \rightarrow 3A + 4B
\]
3. Therefore, the ΔG⁰ₓₙ for the target reaction will be twice that of the given reaction:
\[
ΔG⁰ₓₙ = 2 \times 240.5 \text{ kJ/mol} = 481.0 \text{ kJ/mol}
\]
### Conclusion:
The standard Gibbs free energy change (ΔG⁰ₓₙ) for the reaction \(2C \rightarrow 3A + 4B\) is 481.0 kJ/mol.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc80d6140-4b5d-446e-8970-6dff282bf772%2F9718c1bf-fc2e-4c2d-a79b-faae29e5154f%2F3k5uvfk_processed.png&w=3840&q=75)
Transcribed Image Text:### Determining the Standard Gibbs Free Energy Change (ΔG⁰ₓₙ)
#### Problem Statement:
Calculate the value of ΔG⁰ₓₙ for the reaction:
\[
2C \rightarrow 3A + 4B
\]
#### Given Information:
For the reaction:
\[
C \rightarrow \frac{3}{2} A + 2B
\]
the standard Gibbs free energy change (ΔG⁰ₓₙ) is given as:
\[
ΔG⁰ₓₙ = 240.5 \text{ kJ/mol}
\]
#### Explanation:
To determine the ΔG⁰ₓₙ for the target reaction, consider the given reaction and how it relates to the target reaction.
1. The given reaction:
\[
C \rightarrow \frac{3}{2} A + 2B
\]
has a ΔG⁰ₓₙ value of 240.5 kJ/mol.
2. For the target reaction:
\[
2C \rightarrow 3A + 4B
\]
Notice that the target reaction is exactly twice the given reaction:
\[
2 \times \left( C \rightarrow \frac{3}{2} A + 2B \right)
\]
which simplifies to:
\[
2C \rightarrow 3A + 4B
\]
3. Therefore, the ΔG⁰ₓₙ for the target reaction will be twice that of the given reaction:
\[
ΔG⁰ₓₙ = 2 \times 240.5 \text{ kJ/mol} = 481.0 \text{ kJ/mol}
\]
### Conclusion:
The standard Gibbs free energy change (ΔG⁰ₓₙ) for the reaction \(2C \rightarrow 3A + 4B\) is 481.0 kJ/mol.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY